Skip to main content
Log in

Static and Dynamic Testing of Bag-Type Molecular Spring Vibration Isolator

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The bag-type molecular spring vibration isolator combines the characteristics of air spring and molecular spring. The molecular spring is placed in the bag-type vibration isolator. When the isolator is subjected to external load, the bag-type molecular spring vibration isolator is compressed, and the water invades and escapes from the hydrophobic micropores of the molecular spring material under external pressure, realizing the storage and release of energy. Combined with the deformation analysis of the bladder and the process of water molecules invading the hydrophobic micropores, the mechanical model of the molecular spring isolator was established and the force-displacement relationship of the isolator was deduced. The mechanical model was verified by quasi-static test and the influence factors of vibration isolator performance were analyzed by numerical simulation and experiments.Finally, the vibration isolation performance of the molecular spring isolator is measured by the vibration level drop. The results show that the theoretical and experimental results are in good agreement. The molecular spring isolator exhibits high-low-high segmental stiffness characteristics, and the stiffness in stage II is greatly reduced compared with stage I and stage III. The vibration level drop of the molecular spring isolator is more than 23 dB, and more than 93% of the vibration is isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Li, F. and Qi, Z., China Railw., 2014, vol. 4, p. 42. https://doi.org/10.3969/j.issn.1001-683X.2014.04.010

    Article  Google Scholar 

  2. Soulard, M., Patarin, J., Eroshenko, V., and Regis, R., Stud. Surf. Sci. Catal., 2004, vol. 154, no. 4, p. 1830. https://doi.org/10.1016/S0167-2991(04)80716-X

    Article  Google Scholar 

  3. Yu, M., Gao, X., and Chen, Q., J. Mech., 2016, vol. 32, no. 5, p. 527. https://doi.org/10.1017/jmech.2016.52

    Article  Google Scholar 

  4. Yu, M., Chen, Q., and Gao, X., Microsyst. Technol., 2017, vol. 23, no. 2, p. 285. https://doi.org/10.1007/s00542-014-2401-7

    Article  Google Scholar 

  5. Tzanis, L., Trzpit, M., Soulard, M., and Patarin, J., Microporous Mesoporous Mater., 2011, vol. 146, nos. 1–3, p. 119. https://doi.org/10.1016/j.micromeso.2011.03.043

    Article  Google Scholar 

  6. Lowe, A., Tsyrin, N., Chorążewski, M., Zajdel, P., Mierzwa, M., Leão, J.B., Bleuel, M., Feng, T., Luo, D., Li, M., Li, D., Stoudenets, V., Pawlus, S., Faik, A., and Grosu, Y., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 43, p. 40842. https://doi.org/10.1021/acsami.9b14031

  7. Eroshenko, V., Regis, R.-Ch., Soulard, M., and Patarin, J., J. Am. Chem. Soc., 2001, vol. 123, no. 33. p. 8129. https://doi.org/10.1021/ja011011a

    Article  Google Scholar 

  8. Soulard, M., Patarin, J., Eroshenko, V., and Regis, R., Stud. Surf. Sci. Catal., 2004, vol. 154, no. 4, p. 1830. https://doi.org/10.1016/S0167-2991(04)80716-X

    Article  Google Scholar 

  9. Ortiz, G., Nouali, H., Marichal, C., Chaplais, G., and Patarin, J., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 4888. https://doi.org/10.1039/c3cp00142c

    Article  Google Scholar 

  10. Sun, Y., Rogge Sven, M.J., Aran, L., Steven, V., Jelle, W., Clive, S., Veronique, V.-S., and Tan, J., Nat. Mater., 2021, vol. 20, no. 7, p. 1015. https://doi.org/10.1038/s41563-021-00977-6

    Article  ADS  Google Scholar 

  11. Grosu, Y., Mierzwa, M., Eroshenko, V., Pawlus, S., Chorążewski, M., Nedelec, J.-M., and Grolier, J.-P., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 8, p. 7044. https://doi.org/10.1021/acsami.6b14422

    Article  Google Scholar 

  12. Fraux, G., Boutin, A., Fuchs, A.H., and Coudert, F.X., J. Phys. Chem. C, 2019, vol. 123, no. 25, p. 15589. https://doi.org/10.1021/acs.jpcc.9b02718

    Article  Google Scholar 

  13. Jin, J., Yuan, J., and Ge, W., Theoretical Mechanics, Nanjing Southeast Univ. Press, 2019, p. 277.

    Google Scholar 

  14. He, L., Lv, Z., Zhao, Y., and Shuai, C., CN Patent CN201013822Y, 2008.

  15. Zhang, F., Fundamentals of Molecular Interface Chemistry, Shanghai: Shanghai Scientific and Technological Literature Press, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Chen, W. & Teng, H. Static and Dynamic Testing of Bag-Type Molecular Spring Vibration Isolator. Instrum Exp Tech 66, 693–701 (2023). https://doi.org/10.1134/S0020441223040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223040073

Navigation