Skip to main content
Log in

Methods for Forming Gas, Cluster Spray, and Liquid Targets in a Laser-Plasma Radiation Source

  • LABORATORY TECHNOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Methods for the formation of liquid, microdroplet, cluster, and gas targets in vacuum for use in laser-plasma radiation sources are considered. The characteristics of the used target-formation systems and gas-supply systems based on them are given. These systems form pulsed and static jets with low mass flow, on the order of ~70 mL/h of liquid or 1500 cm3/h of gas, which allows pumping out the vacuum volume with one turbomolecular pump with a capacity of 1000 L/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abramenko, D.B., Antsiferov, P.S., Astakhov, D.I., Vinokhodov, A.Yu., Vichev, I.Yu., Gayazov, R.R., and Yakushkin, A.A., Usp. Fiz. Nauk, 2019, vol. 189, no. 3, p. 323. https://doi.org/10.3367/UFNr.2018.06.038447

    Article  Google Scholar 

  2. Berglund, M., Rymell, L., Hertz, H.M., and Wilhein, T., Rev. Sci. Instrum., 1998, vol. 69, p. 2361. https://doi.org/10.1063/1.1148944

    Article  ADS  Google Scholar 

  3. Wieland, M., Wilhein, T., Faubel, M., Ellert, C., Schmidt, M., and Sublemontier, O., Appl. Phys. B: Lasers Opt., 2001, vol. 72, p. 591. https://doi.org/10.1007/s003400100542

    Article  ADS  Google Scholar 

  4. De Groot, J., Hemberg, O., Holmberg, A., and Hertz, H.M., J. Appl. Phys., 2003, vol. 94, p. 3717. https://doi.org/10.1063/1.1602571

    Article  ADS  Google Scholar 

  5. Malmqvist, L., Rymell, L., Berglund, M., and Hertz, H.M., Rev. Sci. Instrum., 1996, vol. 12, p. 4150. https://doi.org/10.1063/1.1147561

    Article  ADS  Google Scholar 

  6. Düsterer, S., Schwoerer, H., Ziegler, W., Ziener, C., and Sauerbrey, R., Appl. Phys. B: Lasers Opt., 2001, vol. 73, p. 693. https://doi.org/10.1007/s003400100730

    Article  ADS  Google Scholar 

  7. Nechai, A.N., Perekalov, A.A., Chkhalo, N.I., and Salashchenko, N.N., Tech. Phys. Lett., 2019, vol. 45, no. 10, p. 970. https://doi.org/10.1134/S1063785019100110

    Article  ADS  Google Scholar 

  8. Hansson, B.A.M. and Hertz, H.M., J. Phys. D: Appl. Phys., 2004, vol. 37, no. 23, p. 3233. https://doi.org/10.1088/0022-3727/37/23/004

    Article  ADS  Google Scholar 

  9. Hansson, B.A., Hemberg, O., Hertz, H.M., Berglund, M., Choi, H.J., Jacobsson, B., and Wilner, M., Rev. Sci. Instrum., 2004, vol. 75, no. 6, p. 2122. https://doi.org/10.1063/1.1755441

    Article  ADS  Google Scholar 

  10. Fogelqvist, E., Kördel, M., Selin, M., and Hertz, H.M., J. Appl. Phys., 2015, vol. 118, no. 17, p. 174902. https://doi.org/10.1063/1.4935143

    Article  ADS  Google Scholar 

  11. Holburg, J., Müller, M., Mann, K., and Wieneke, S., J. Vac. Sci. Technol., A, 2019, vol. 37, no. 3, p. 031303. https://doi.org/10.1116/1.5089201

    Article  Google Scholar 

  12. Fiedorowicz, H., Bartnik, A., Szczurek, M., Daido, H., Sakaya, N., Kmetik, V., and Wilhein, T., Opt. Commun., 1999, vol. 163, nos. 1–3, p. 103. https://doi.org/10.1016/S0030-4018(99)00100-5

    Article  ADS  Google Scholar 

  13. Garbaruk, A.V., Demidov, D.A., Kalmykov, S.G., and Sasin, M.E., Tech. Phys., 2011, vol. 56, no. 6, p. 766. https://doi.org/10.1134/S1063784211060053

    Article  Google Scholar 

  14. Nechay, A.N., Perekalov, A.A., Chkhalo, N.I., Salashchenko, N.N., Zabrodin, I.G., Kaskov, I.A., and Pestov, A.E., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2019, vol. 13, no. 5, p. 862. https://doi.org/10.1134/S1027451019050094

    Article  Google Scholar 

  15. Koroleva, M.R., Mitrukova, E.A., and Korepanov, M.A., J. Phys.: Conf. Ser., 2021, vol. 2057, p. 012016. https://doi.org/10.1088/1742-6596/2057/1/012016

    Article  Google Scholar 

  16. Ramos, A., Fernández, J.M., Tejeda, G., and Montero, S., Phys. Rev. A, 2005, vol. 72, no. 5, p. 053204. https://doi.org/10.1103/PhysRevA.72.053204

    Article  ADS  Google Scholar 

  17. Hagena, O.F., Surf. Sci., 1981, vol. 106, no. 1, p. 101.

    Article  ADS  Google Scholar 

  18. Hagena, O.F. and Obert, W., J. Chem. Phys., 1972, vol. 56, no. 5, p. 1793. https://doi.org/10.1063/1.1677455

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported financially by the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-15-2021-1361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Nechay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, V.E., Korepanov, M.A., Koroleva, M.R. et al. Methods for Forming Gas, Cluster Spray, and Liquid Targets in a Laser-Plasma Radiation Source. Instrum Exp Tech 66, 702–711 (2023). https://doi.org/10.1134/S0020441223030193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223030193

Navigation