Skip to main content
Log in

Studying the Operation of Silicon Photomultiplier Matrices at Cryogenic Temperatures

  • NUCLEAR EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The performance of MPPC 13360-6050PE SiPM matrices with parallel and series connections of elements under conditions of an experiment with a two-phase detector has been investigated, and theoretical calculations of the signal characteristics have been performed for these matrices. It is shown that the signal duration does not change with a high accuracy when SiPMs are connected in series but increases with the number of SiPMs in the matrix when SiPMs are connected in parallel. Within the measurement accuracy, the integral amplitude of the signal does not depend on the number of elements in a matrix in case of the parallel connection. For the series connection, the expected decrease in the amplitude is observed, and this decrease is inversely proportional to the number of elements in the matrix. Based on the results of this study, an SiPM matrix consisting of four parallel-connected elements has been selected for further use in a two-phase cryogenic dark-matter detector since reliable detection of single-photoelectron pulses by this matrix has been demonstrated at an acceptable signal duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Akimov, D.Y., Bolozdynya, A.I., Buzulutskov, A.F., and Chepel, V., Two-Phase Emission Detectors, World Scientific, 2021, p. 1.332. https://doi.org/10.1142/12126

    Book  Google Scholar 

  2. Chepel, V. and Araujo, H., J. Instrum., 2013, vol. 8, p. R04001. https://doi.org/10.1088/1748-0221/8/04/R04001

  3. Arcadi, G., Dutra, M., Ghosh, P., Lindner, M., Mambrini, M., Pierre, M., Profumo, S., and Queiroz, F. S., Eur. Phys. J. C, 2018, vol. 78, p. 203. https://doi.org/10.1140/epjc/s10052-018-5662-y

    Article  ADS  Google Scholar 

  4. DarkSide Collab., Aalseth, C.E., et al., Eur. Phys. J. Plus, 2018, vol. 133, p. 129. https://doi.org/10.1140/epjp/i2018-11973-4

    Article  Google Scholar 

  5. DarkSide Collab., Aalseth, C.E., et al., Eur. Phys. J. C, 2021, vol. 81, p. 163. https://doi.org/10.1140/epjc/s10052-020-08801-2

    Article  ADS  Google Scholar 

  6. Baudis, L., Galloway, M., Kish, A., Marentini, C., and Wulf, J., J. Instrum., 2018, vol. 13, p. 10022. https://doi.org/10.1088/1748-0221/13/10/P10022

    Article  Google Scholar 

  7. Acerbi, F., Paternoster, G., Capasso, M., Marcante, M., Mazzi, A., Regazzoni, V., Zorzi, N., and Gola, A., Instruments, 2019, vol. 3, p. 15. https://doi.org/10.3390/instruments3010015

    Article  Google Scholar 

  8. Yamamoto, K., Nagano, T., Yamada, R., Ito, T., and Ohashi, Y., JPS Conf. Proc., 2019, vol. 27, p. 011001. https://doi.org/10.7566/JPSCP.27.011001.

  9. Garutti, E., J. Instrum., 2011, vol. 6, p. C10003. https://doi.org/10.1088/1748-0221/6/10/C10003

  10. Anderhub, H., Backes, M., Biland, A., Boccone, V., Braun, I., Bretz, T., Bu, J., Cadoux, F., Commichau, V., Djambazov, L., Dorner, D., Einecke, S., Eisenacher, D., Gendotti, A., Grimm, O., et al., J. Instrum., 2013, vol. 8, p. P06008. https://doi.org/10.1088/1748-0221/8/06/P06008

  11. Mora, A.D., Martinenghi, E., Contini, D., Tosi, A., Boso, G., Durduran, T., Arridge, S., Martelli, F., Farina, A., Torricelli, A., and Pifferi, A., Opt. Express, 2015, vol. 23, no. 11, p. 13937. https://doi.org/10.1364/OE.23.013937

    Article  ADS  Google Scholar 

  12. Modi, M.N., Daie, K., Turner, G.C., and Podgorski, K., Opt. Express, 2019, vol. 27, no. 24, p. 35830. https://doi.org/10.1364/OE.27.035830

    Article  ADS  Google Scholar 

  13. Otte, A.N., Barral, J., Dolgoshein, B., Hose, J., Klemin, S., Lorenz, E., Mirzoyan, R., Popova, E., and Teshima, M., Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, vol. 545, no. 3, p. 705. https://doi.org/10.1016/j.nima.2005.02.014

    Article  Google Scholar 

  14. Renker, D., Nucl. Instrum. Methods Phys. Res., Sect. A, 2006, vol. 567, p. 48. https://doi.org/10.1016/j.nima.2006.05.060

    Article  Google Scholar 

  15. Ozaki, K., Kazama, S., Yamashita, M., Itow, Y., and Moriyama, S., J. Instrum., 2021, vol. 16, p. P03014. https://doi.org/10.1088/1748-0221/16/03/P03014

  16. Cervi, T., Babicz, M.E., Bonesini, M., Falcone, A., Kose, U., Nessi, M., Menegolli, A., Pietropaolo, F., Raselli, G.L., Rossella, M., Torti, M., and Zani, A., J. Instrum., 2017, vol. 12, p. C03007. https://doi.org/10.1088/1748-0221/12/03/C03007

  17. D’Incecco, M., Galbiati, C., Giovanetti, G.K., Korga, G., Li, X., Mandarano, A., Razeto, A., Sablone, D., and Savarese, C., IEEE Trans. Nucl. Sci., 2017, vol. 65, p. 591. https://doi.org/10.1109/TNS.2017.2774779

    Article  ADS  Google Scholar 

  18. Bondar, A., Buzulutskov, A., Dolgov, A., Shemyakina, E., and Sokolov, A., J. Instrum., 2015, vol. 10, p. P04013. https://doi.org/10.1088/1748-0221/10/04/P04013

  19. Bondar, A., Buzulutskov, A., Dolgov, A., Shekhtman, L., Shemyakina, E., Sokolov, A., Breskin, A., and Thers, D., J. Instrum., 2014, vol. 9, p. P08006. https://doi.org/10.1088/1748-0221/9/08/P08006

  20. Popova, E.V., Buzhan, P.Zh., Stifutkin, A.A., Ilyin, A.L., Mavritskii, O.B., Egorov, A.N., and Nastulyavichius, A.A., J. Phys.: Conf. Ser., 2016, vol. 737, p. 012041. https://doi.org/10.1088/1742-6596/737/1/012041

  21. Cova, S., Ghioni, M., Lacaita, A., Samori, C., and Zappa, F., Appl. Opt., 1996, vol. 35, no. 12, p. 1956. https://doi.org/10.1364/AO.35.001956

    Article  ADS  Google Scholar 

  22. https://hub.hamamatsu.com/us/en/technical-notes/mppc-sipms/what-is-an-SiPM-andhow-does-it-work.html.

  23. https://www.hamamatsu.com/.

  24. Bondar, A., Buzulutskov, A., Grebenuk, A., Pavlyuchenko, D., Snopkov, R., Tikhonov, Y., Kudryavtsev, V.A., Lightfoot, P.K., and Spooner, N.J.C., Nucl. Instrum. Methods Phys. Res., Sect. A, 2007, vol. 574, p. 493. https://doi.org/10.1016/j.nima.2007.01.090

    Article  Google Scholar 

  25. Bondar, A., Buzulutskov, A., Dolgov, A., Nosov, V., Shekhtman, L., Shemyakina, E., and Sokolov, A., Europhys. Lett., 2015, vol. 112, p. 19001. https://doi.org/10.1209/0295-5075/112/19001

    Article  ADS  Google Scholar 

  26. Bondar, A., Borisova, E., Buzulutskov, A., Frolov, E., and Sokolov, A., J. Instrum., 2020, vol. 15, p. C06064. https://doi.org/10.1088/1748-0221/15/06/C06064

  27. Buzulutskov, A., Frolov, E., Borisova, E., Nosov, V., Oleynikov, V., and Sokolov, A., Eur. Phys. J. C, 2022, vol. 82, p. 839. https://doi.org/10.1140/epjc/s10052-022-10792-1

    Article  ADS  Google Scholar 

  28. Aalseth, C.E., Abdelhakim, S., Agnes, P., Ajaj, R., Albuquerque, I.F.M., Alexander, T., Alici, A., Alton, A.K., Amaudruz, P., Ameli, F., Anstey, J., Antonioli, P., Arba, M., Arcelli, S., Ardito, R., et al., Eur. Phys. J. C, 2021, vol. 81, p. 153. https://doi.org/10.1140/epjc/s10052-020-08801-2

    Article  ADS  Google Scholar 

  29. Rosado, J. and Hidalgo, S., J. Instrum., 2015, vol. 10, p. P10031. https://doi.org/10.1088/1748-0221/10/10/P10031

  30. Horowitz, P. and Hill, W., The Art of Electronics, Cambridge Univ. Press, 2015, chap. 8.5.7, pp. 497–499, chap. 8.11.3, pp. 538–539.

    Google Scholar 

  31. Bondar, A., Buzulutskov, A., Grebenuk, A., Sokolov, A., Akimov, D., Alexandrov, I. and Breskin, A., J. Instrum., 2010, vol. 5, p. P08002. https://doi.org/10.1088/17480221/5/08/p08002

  32. Collazuol, G., Proc. 15th Vienna Conference on Instrumentation VCI-2019, Vienna: Vienna Univ. of Technology, February 18–22, 2019, p. 86. https://indi.to/DyMp5.

  33. Cervi, T., Babicz, M., Bonesini, M., Falcone, A., Menegolli, A., Raselli, G.L., Rossella, M., and Torti, M., Nucl. Instrum. Methods Phys. Res., Sect. A, 2018, vol. 912, p. 209. https://doi.org/10.1016/j.nima.2017.11.038

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Science Foundation (project no. 21-72-00014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Borisova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondar, A.E., Borisova, E.O., Buzulutskov, A.F. et al. Studying the Operation of Silicon Photomultiplier Matrices at Cryogenic Temperatures. Instrum Exp Tech 66, 538–552 (2023). https://doi.org/10.1134/S002044122303003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044122303003X

Navigation