Skip to main content
Log in

Thermoluminescent Dosimeters Based on Aluminum Oxide and Aluminum Nitride Ceramics

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

The luminescence characteristics of commercial ceramic substrates based on AlN and Al2O3 have been investigated. Based on the results, it is possible to determine the conditions under which these materials can be used in ionizing-radiation dosimetry. The TLD-K and TLD-500 thermoluminescent detectors are used for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Trinkler, L., Botter-Jensen, L., Christensen, P., and Berzina, B., Radiat. Meas., 2001, vol. 33, no. 5, p. 731. https://doi.org/10.1016/S1350-4487(01)00093-2

    Article  Google Scholar 

  2. Trinkler, L., Berzina, B., Kasjan, D., and Chen, L.-Ch., Radiat. Meas., 2008, vol. 43, p. 231. https://doi.org/10.1016/j.radmeas.2007.12.025

    Article  Google Scholar 

  3. Bi, Z.X., Zheng, Y.D., Zhang, R., Gu, S.L., Xiu, X.Q., Zhou, L.L., Shen, B., Chen, D.J., and Shi, Y., J. Mater. Sci.: Mater. Electron., 2004, no. 15, p. 317. https://doi.org/10.1023/B:JMSE.0000024233.82681.dc

  4. Tanaka, S., Hu, Q., Grishmanov, V., and Yoneoka, T., Nucl. Instrum. Methods Phys. Res., Sect. B, 1998, vol. 141, p. 547.

    Google Scholar 

  5. Akselrod, M.S., Kortov, V.S., Kravetsky, D.J., and Gotlib, V.I., Radiat. Prot. Dosim., 1990, vol. 32, no. 1, p. 15.

    Google Scholar 

  6. Kortov, V.S. and Nikiforov, S.V., Nanosist., Nanomater., Nanotekhnol., 2011, vol. 9, no. 1, p. 41.

    Google Scholar 

  7. Kortov, V.S., Ermakov, A.E., Zatsepin, A.F., Uimin, M.A., Nikiforov, S.V., Mysik, A.A., and Gaviko, V.S., Phys. Solid State, 2008, vol. 50, no. 5, p. 957. https://doi.org/10.1134/S1063783408050259

    Article  ADS  Google Scholar 

  8. Kortov, V.S., Pustovarov, V.A., and Shtang, T.V., Radiat. Meas., 2016, vol. 85, p. 51. https://doi.org/10.1016/j.radmeas.2015.12.009

    Article  Google Scholar 

  9. Aluker, N.L., Suzdaltseva, J.M., Dulepova, A.S., and, Herrmann, M.E., Instrum. Exp. Tech., 2016, vol. 59, no. 5, pp. 733–739. https://doi.org/10.1134/S002044121605002X

    Article  Google Scholar 

  10. Aluker, N.L., Artamonov, A.S., and Herrmann, M. E., Instrum. Exp. Tech., 2021, vol. 64, no. 3, pp. 437–443. https://doi.org/10.1134/S0020441221020214

    Article  Google Scholar 

  11. Kortov, V.S., Syurdo, A.I., and Sharafutdinov, F.F., Zh. Eksp. Teor. Fiz., 1997, vol. 67, no. 7, p. 72.

    Google Scholar 

  12. Kostyukov, A.I., Zhuzhgov, A.V., Kaichev, V.V., Rastorguev, A.A., and Snytnikov, V.N., Opt. Mater., 2018, vol. 75, p. 757. https://doi.org/10.1016/j.optmat.2017.11.040

    Article  ADS  Google Scholar 

  13. Berezovskaya, I.V., Khomenko, O.V., Poletaev, N.I., Khlebnikova, M.E., Stoyanova, I.V., Efryushina, N.P., and Dotsenko, V.P., Funct. Mater., 2018, vol. 25, no. 3, p. 490. https://doi.org/10.15407/fm25.03.490

    Article  Google Scholar 

  14. Kotomin, E.A. and Popov, A.I., Nucl. Instrum. Methods Phys. Res., Sect. B, 1998, vol. 141, nos. 1–4, p. 1. https://doi.org/10.1016/S0168-583X(98)00079-2

    Article  Google Scholar 

  15. Novita, M. and Ogasawara, K., J. Phys. Soc. Jpn., 2012, vol. 81, p. 104709. https://doi.org/10.1143/JPSJ.81.104709

    Article  ADS  Google Scholar 

  16. Adachi, S., J. Lumin., 2018, vol. 202, p. 263. https://doi.org/10.1016/j.jlumin.2018.05.053

    Article  Google Scholar 

  17. Xu, Y., Wang, L., Qu, B., Li, D., Lu, J., and Zhou, R., J. Am. Ceram. Soc., 2019, vol. 102, p. 2737. https://doi.org/10.1111/jace.16155

    Article  Google Scholar 

  18. Kulinkin, A.B., Feofilov, S.V., and Zakharchenya, R.I., Phys. Solid State, 2000, vol. 42, no. 5, p. 857.

    Article  ADS  Google Scholar 

  19. Salek, G., Devoti, A., Lataste, E., Demourgues, A., Garcia, A., Jubera, V., and Gaudon, M., J. Lumin., 2016, vol. 179, p. 189. https://doi.org/10.1016/j.jlumin.2016.07.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Aluker.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aluker, N.L., Artamonov, A.S., Gimadova, T.I. et al. Thermoluminescent Dosimeters Based on Aluminum Oxide and Aluminum Nitride Ceramics. Instrum Exp Tech 64, 860–868 (2021). https://doi.org/10.1134/S0020441221050158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221050158

Navigation