Skip to main content
Log in

Using a Semiconductor Laser with Frequency Capture as an Operating Optical Generator of a Coherent Reflectometer for Distributed Vibration Frequency Measurements

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A standard distributed feedback semiconductor laser that is self-stabilized through the frequency capture effect of an external fiber ring resonator is able to replace the standard reference oscillator of a coherent reflectometer in the system of a distributed fiber vibration sensor. A direct comparison of the signal-to-noise ratio, as measured in configurations with a semiconductor and reference master oscillator, has been carried out for quantitative assessment of the ability of the system to restore the frequency spectrum of vibrations. Distributed measurements of vibration spectra with frequencies up to 5600 Hz and a spatial resolution of 10 m when performed on an optical fiber at a distance of ~3500 m show a signal-to-noise ratio above ~8 dB for both configurations. The difference between the configurations was less than 2 dB over the entire spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gorbulenkov, V., Leonov, A., Marchenko, K., and Tre-shchikov, V., Foton-Ekspress, 2014, no. 5 (117), p. 12.

  2. Nesterov, E., Ozerov, A., Nanii, O., and Treshchikov, V., Foton-Ekspress, 2011, no. 6 (94), p. 122.

  3. Lu, Y., Zhu, T., Chen, L., and Bao, X., J. Lightwave Technol., 2010, vol. 28, no. 22, p. 3243.

    ADS  Google Scholar 

  4. Fomiryakov, E.A., Kharasov, D.R., Nikitin, S.P., Nanii, O.E., and Treshchikov, V.N., Foton-Ekspress, 2019, no. 6 (158), p. 48. https://doi.org/10.24411/2308-6920-2019-16019

  5. Peng, F., Wu, H., Jia, X.-H., Rao, Y.-J., Wang, Z.-N., and Peng, Z.-P., Opt. Express, 2014, vol. 22, no. 11, p. 13804. https://doi.org/10.1364/OE.22.013804

    Article  ADS  Google Scholar 

  6. Spirin, V.V., Castro, M., López-Mercado, C.A., Mégret, P., and Fotiadi, A.A., Laser Phys., 2012, vol. 22, p. 760. https://doi.org/10.1134/S1054660X12040214

    Article  ADS  Google Scholar 

  7. Spirin, V.V., López -Mercado, C.A., Mégret, P., and Fotiadi, A.A., Laser Phys. Lett., 2012, vol. 9, p. 377. https://doi.org/10.7452/lapl.201110138

    Article  ADS  Google Scholar 

  8. Spirin, V.V., López -Mercado, C.A., Kinet, D., Mégret, P., Zolotovskiy, I.O., and Fotiadi, A.A., Laser Phys. Lett., 2013, vol. 10, p. 015102. https://doi.org/10.1088/1612-2011/10/1/015102

    Article  ADS  Google Scholar 

  9. López -Mercado, C.A., Spirin, V.V., Escobedo, J.L.B., Lucero, A.M., Mégret, P., Zolotovskii, I.O., and Fotiadi, A.A., Opt. Commun., 2016, vol. 359, p. 195. https://doi.org/10.1016/j.optcom.2015.09.076

  10. Spirin, V.V., Escobedo, J.L.B., Korobko, D.A., Mégret, P., and Fotiadi, A.A., Opt. Express, 2020, vol. 28, p. 478. https://doi.org/10.1364/OE.28.000478

    Article  ADS  Google Scholar 

  11. Escobedo, J.L.B., Spirin, V.V., López -Mercado, C.A., Lucero, A.M., Mégret, P., Zolotovskii, I.O., and Fotiadi, A.A., Results Phys., 2017, vol. 7, p. 641. https://doi.org/10.1016/j.rinp.2017.01.013

    Article  ADS  Google Scholar 

  12. Spirin, V.V., López -Mercado, C.A., Mégret, P., and Fotiadi, A.A., in Selected Topics on Optical Fiber Technologies and Applications,InTech, 2018. https://doi.org/10.5772/intechopen.72553

    Book  Google Scholar 

  13. López-Mercado, C.A., Jason, J., Spirin, V.V., Escobedo, J.L.B., Wuilpart, M., Mégret, P., Korobko, D.A., Zolotovskiy, I.O., and Fotiadi, A.A., Proc. SPIE, 2018, vol. 10680, p. 106802S. https://doi.org/10.1117/12.2307683

    Article  Google Scholar 

  14. Escobedo, J.L.B., Jason, J., López-Mercado, C.A., Spirin, V.V., Wuilpart, M., Mégret, P., Korobko, D.A., Zolotovskiy, I.O., and Fotiadi, A.A., Results Phys., 2019, vol. 12, p. 1840. https://doi.org/10.1016/j.rinp.2019.02.023

    Article  ADS  Google Scholar 

  15. Spirin, V.V., López-Mercado, C.A., Kablukov, S.I., Zlobina, E.A., Zolotovskiy, I.O., Mégret, P., and Fotiadi, A.A., Opt. Lett., 2013, vol. 38, p. 2528. https://doi.org/10.1364/OL.38.002528

    Article  ADS  Google Scholar 

  16. López -Mercado, C.A., Spirin, V.V., Kablukov, S.I., Zlobina, E.A., Zolotovskiy, I.O., Mégret, P., and Fotiadi, A.A., Opt. Fiber Technol., 2014, vol. 20, p. 194. https://doi.org/10.1016/j.yofte.2014.01.011

  17. Escobedo, J.L.B., Spirin, V.V., López -Mercado, C.A., Mégret, P., Zolotovskii, I.O., and Fotiadi, A.A., Results Phys., 2016, vol. 6, p. 59. https://doi.org/10.1016/j.rinp.2016.01.017

    Article  ADS  Google Scholar 

  18. Korobko, D.A., Zolotovskii, I.O., Panajotov, K., Spirin, V.V., and Fotiadi, A.A., Opt. Commun., 2017, vol. 405, p. 253. https://doi.org/10.1016/j.optcom.2017.08.040

    Article  ADS  Google Scholar 

  19. Hartog, A.H., An Introduction to Distributed Optical Fibre Sensors, Boca Raton, FL: CRC Press, 2017. https://doi.org/10.1201/9781315119014

    Book  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project 18-12-00457) and the Russian Foundation for Basic Research (project nos. 18-42-732001 r_mk, 19-42-730009 r_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fotiadi.

Additional information

The results of this research were presented and discussed at the third International Conference “Optical Reflectometry, Metrology, and Sensorics 2020” (http://or-2020.permsc.ru/, September 22–24, Perm, Russia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spirin, V.V., Lόpez-Mercado, C.A., Wuilpart, M. et al. Using a Semiconductor Laser with Frequency Capture as an Operating Optical Generator of a Coherent Reflectometer for Distributed Vibration Frequency Measurements. Instrum Exp Tech 63, 476–480 (2020). https://doi.org/10.1134/S002044122005005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044122005005X

Navigation