Skip to main content
Log in

A Device for Noncontact Determination of the Photosensitivity Distribution on Areas of n+p(n)–p+-Type Silicon Structures

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A device is described that allows one to measure the photosensitivity contrast over the area of n+p(n)–p+ silicon structures without contacts. The structure is placed between the capacitor plates and is locally illuminated on one side by two intensity-modulated lasers. The laser wavelengths are 1064 and 808 nm. The radiations of the first and second lasers are absorbed in the volume of the base region and only near its illuminated surface, respectively. The local photosensitivity is determined by the ratio of the amplitudes of the modulations, at which the total variable photo-emf vanishes. This compensation allows one to avoid an error that is associated with shunting of the illuminated area of the structure by the rest of it due to currents in the n+ and p+ layers. The photosensitivity contrasts measured by the proposed compensation method and the standard method based on short-circuit current measurements were compared on n+pp+ single-crystal silicon structures. The difference was no more than 6%, which is consistent with the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Van Wezep, D.A., van der Velden, M.H.L., Bosra, D.M., and Bosh, R.C.M., Proc. 26th European Photovoltaic Solar Energy Conference, The Most Inspiring Platform for the Global PV Solar Sector, Hamburg, September 5–9,2011, Munich: WIP-Renewables, 2011, p. 1423.

  2. Sze, S.M., Physics of Semiconductor Devices, New York: Wiley, 1981.

    Google Scholar 

  3. Auth, J., Genzow, D., and Herrmann, K.-H., Photoelektrische Erscheinungen, Berlin: Akademie-Verlag, 1977.

    Book  Google Scholar 

  4. Vasil’ev, A.M. and Landsman, A.P., Poluprovodnikovye fotopreobrazovateli (Semiconductor Photo-Converters), Moscow: Sovetskoe Radio, 1971. http://www.toroid.ru/vasilievAM.html. http://www.twirpx.com/file/1356516/.

  5. Seeger, K., Semiconductor Physics, Wien, New York: Springer, 1973.

    Book  Google Scholar 

  6. Koltun, M.M., Optika i metrologiya solnechnykh elementov (Optics and Metrology of Solar Cells), Moscow: Nauka, 1985, p. 46.

  7. Schmidt, J. and Aberle, A.G., J. Appl. Phys., 1997, vol. 81, no. 9, p. 6186. https://doi.org/10.1063/1.3644035

    Article  ADS  Google Scholar 

  8. Gaubas, E. and Kaniava, A., Rev. Sci. Instrum., 1996, vol. 67, no. 6, p. 2339. https://doi.org/10.1063/1.1146943

    Article  ADS  Google Scholar 

  9. Kiliani, D., Micard, G., Steuer, B., Raabe, B., Herguth, A., and Hahn, G., J. Appl. Phys., 2011, vol. 110, p. 054508. https://doi.org/10.1063/1.3630031

    Article  ADS  Google Scholar 

  10. Trupke, T., Bardos, R.A., Schubert, M.C., and Warta, W., Appl. Phys. Lett., 2006, vol. 89, p. 044107. https://doi.org/10.1063/1.2234747

    Article  ADS  Google Scholar 

  11. Higgs, V., Mayes, I.C., Heng Chin, F.Y., and Sweeney, M., US Patent 7113276B1, 2006.

  12. http://solar-front.livejournal.com/11644.html.

  13. Bowder, S. and Sinton, R.A., J. Appl. Phys., 2007, vol. 102, p. 124501-1. https://doi.org/10.1063/1.2818371

    Article  ADS  Google Scholar 

  14. Kerr, M.J., Cuevas, A., and Sinton, R.A., J. Appl. Phys., 2002, vol. 91, no. 1, p. 399.https://doi.org/10.1063/1.1416134

  15. Koshelev, O.G., Bull. Rus. Acad. Sci.: Phys., 2017, vol. 81, no. 1, p. 34. https://doi.org/10.3103/S1062873817010142

    Article  Google Scholar 

  16. Koshelev, O.G., Bull. Rus. Acad. Sci.: Phys., 2020, vol. 84, no. 1, p. 44. https://doi.org/10.3103/S1062873820010141

    Article  Google Scholar 

  17. Hovsepyan, A., Babajanyan, A., Sargsyan, T., Melikyan, H., Kim, S., Kim, J., Lee, K., and Friedman, B., J. Appl. Phys., 2009, vol. 106, p. 114901. https://doi.org/10.1063/1.3259366

    Article  ADS  Google Scholar 

  18. Koshelev, O.G. and Morozova, V.A., RF Patent 2019890, Byull. Izobret., 1994, no. 17.

  19. Koshelev, O.G. and Morozova, V.A., Solid-State Electron., 1996, vol. 39, no. 9, p. 1379. https://doi.org/10.1016/0038-1101(96)00040-8

    Article  ADS  Google Scholar 

  20. Koshelev, O.G. and Vasiljev, N.G., Mod. Electron. Mater., 2017, no. 3, p. 127. https://doi.org/10.1016/j.moem.2017.11.002

  21. Mishima, T., Taguchi, M., Sakata, H., and Maruyama, E., Sol. Energy Mater. Sol. Cells, 2011, vol. 95, no. 1, p. 18. https://doi.org/10.1016/j.solmat.2010.04.030

    Article  Google Scholar 

  22. Koshelev, O.G. and Vasil’ev, N.G., Bull. Rus. Acad. Sci.: Phys., 2018, vol. 82, no. 1, p. 98. https://doi.org/10.3103/S1062873818010112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Koshelev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshelev, O.G. A Device for Noncontact Determination of the Photosensitivity Distribution on Areas of n+p(n)–p+-Type Silicon Structures. Instrum Exp Tech 63, 600–606 (2020). https://doi.org/10.1134/S0020441220040144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220040144

Navigation