Skip to main content
Log in

An Apparatus for Studying Phosphor Luminescence upon Excitation by Atomic–Molecular Beams

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The scheme, design, and hardware of a new laboratory apparatus for studying the interaction of beams of free atoms and molecules with the surfaces of phosphors are described. Methods for measuring the efficiency of electronic radiative processes on surfaces for studying the mechanisms of energy transfer and surface changes based on the spectral–kinetic characteristics of heterogeneous chemiluminescence are presented. Luminescent methods for studying the heterogeneous recombination of hydrogen atoms on the surfaces of solids allow one to explicitly select the impact (Rideal–Eley) and diffusion (Langmuir–Hinshelwood) recombination mechanisms and estimate the fraction of contributions of these mechanisms to the total recombination rate of atoms depending on the flow density of free atoms and the sample temperature. Examples of studying the spectra of the heterogeneous chemiluminescence (HCL) and photoluminescence (PL) at different temperatures of an AlN : Eu3+ phosphor under the excitation with hydrogen atoms and a mercury lamp are given. During processing of the kinetic curves of the HCL buildup and decay for ZnS : Tm3+ phosphor upon switching the Н + Н2 atomic–molecular beam on and off, an example of obtaining the parameters of atomic–molecular processes on the surface (adsorption, impact and diffusion recombination of atoms, and desorption of hydrogen molecules) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Dingkun Zhang and Ming Lin, J. Anal. Test., 2017, vol. 1, p. 267. https://doi.org/10.1007/s41664-017-0043-3

    Article  Google Scholar 

  2. Grankin, V.P., Voloshchuk, S.A., and Grankin, D.V., Poverkhnost, 2010, no. 6, p. 92.

  3. Mikheeva, I.L., Kurinnyi, V.K., Tayakin, V.Yu., and Mazyra, L.D., Elektron. Ekol. Tekhnol. Konstr. Elektron. Appar., 2004, no. 2, p. 24.

  4. Styrov, V.V. and Tyurin, Yu.I., Neravnovesnye khemoeffekty na poverkhnosti tverdykh tel (Non-Equilibrium Chemo-Effects on Solids’ Surface), Moscow: Energoatomizdat, 2003.

  5. Shigalugov, S.H., Tyurin, Y.I., Borovitskaya, A.O., and Dubrov, D.V., Period. Tche Quim., 2019, vol. 16, no. 31b, p. 810.

    Google Scholar 

  6. Aseev, V.A., Kolobkova, E.V., Nekrasova, Ya.A., Nikonorov, N.V., and Rokhmin, A.S., Mater. Phys. Mech., 2013, vol. 17, p. 135.

    Google Scholar 

  7. Asatryan, G.R., Badikov, V.V., Kulinkin, A.B., and Feofilov, S.P., Phys. Solid State, 2015, vol. 57, no. 1, p. 106.

    Article  ADS  Google Scholar 

  8. Pozdnyakov, E.I., Vestn. Sev.-Kavk. Fed. Univ., 2013, no. 5 (38), p. 70.

  9. Zuev, M.G., Il’ves, V.G., Sokovnin, S.Yu., Vasin, A.A., and Baklanova, I.V., Phys. Solid State, 2019, vol. 61, no. 5, p. 925.

    Article  ADS  Google Scholar 

  10. Mamonova, D.V., Cand. Sci. (Chem.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2015.

  11. Oleinikov, V.A., Russ. J. Bioorg. Chem., 2011, vol. 37, no. 2, p. 151.

    Article  Google Scholar 

  12. Tyurin, Yu.I., Nikitenkov, N.N., Sigfusson, T.I., Hashhash, A., Yaomin, Van, and Tolmacheva, N.D., Int. J. Hydrogen Energy, 2017, vol. 42, p. 12448. https://doi.org/10.1016/j.ijhydene.2017.03.058

    Article  Google Scholar 

  13. http://новосибирск.магниты.рф/neodimovyy-magnit-bolshoy-kvadrat-k-60-18-05-n.

  14. Melin, G.A. and Madix, R.J., Trans. Faraday Soc., 1971, vol. 67, p. 2711. https://doi.org/10.1039/TF9716702711

    Article  Google Scholar 

  15. https://pdf1.aldatasheet.com/datasheet-pdf/view/ 575324/HAMAMATSU/H11459-20.html.

  16. Jungwook Choi and Jongbaeg Kim, Sens. Actuators, B, 2009, vol. 136, no. 1, p. 92. https://doi.org/10.1016/j.snb.2008.10.046

    Article  Google Scholar 

  17. Tollefson, E.L. and Le Roy, D.J., J. Chem. Phys., 1948, vol. 16, no. 11, p. 1055. https://doi.org/10.1063/1.1746724

    Article  ADS  Google Scholar 

  18. Kudryavtsev, N.N., Mazyar, O.A., and Sukhov, A.M., Usp. Fiz. Nauk, 1993, vol. 163, no. 6, p. 75. https://doi.org/10.3367/UFNr.0163.199306c.0075

    Article  Google Scholar 

  19. Sokolov, V.A., Khoruzhii, V.D., and Styrov, V.V., Spektroskopiya kristallov (Spectroscopy of Crystals), Moscow: Nauka, 1975, pp. 295–297.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yaoming.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaoming, W., Tyurin, Y.I., Nikitenkov, N.N. et al. An Apparatus for Studying Phosphor Luminescence upon Excitation by Atomic–Molecular Beams. Instrum Exp Tech 63, 214–220 (2020). https://doi.org/10.1134/S0020441220020165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220020165

Navigation