Skip to main content
Log in

An Analog-to-Digital Converter Module with Signal Shape Digitization for the VES Experiment

  • ELECTRONICS AND RADIO ENGINEERING
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A 32-channel 12-bit ADC-32ATC analog-to-digital conversion module with signal shape digitization at 40 MHz, which was been developed for the VES experiment at the U-70 accelerator, is presented. The analog shapers for this module, the measurement methods, the data-processing techniques, and the experience gained in using this module in the VES experiment are described. The module is intended to register single pulses with a stable shape or a linear combination of a few such pulses with positive coefficients. It can be used for calorimeters, as well as for Cherenkov and scintillation counters, in fixed-target experiments in high-energy physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

Notes

  1. Abbreviations and notations used in the paper are also given in the Appendix.

  2. Semak, A.A., private communication.

  3. SPILL is used here to denote this stage or a portion of recorded data associated with it.

  4. The normal and jumbo frames are frames with a maximum payload of 1500 and 8192 bytes, respectively.

  5. The thickness of the EMC counter downstream of the beam is approximately one nuclear interaction length.

  6. Ivashin, A.V., private communication.

REFERENCES

  1. Volkov, E.V., Ivashin, A.V., Kalendarev, V.V., Matveev, V.D., Sugonyaev, V.P., Khokhlov, Yu.A., and Shumakov, A.A., Preprint of Institute for High Energy Physics, Protvino, 2017, no. 2017-8.

  2. Eremeev, D.R., Ivashin, A.V., Matveev, V.D., Mikha-senko, M.O., Sugonyaev, V.P., and Khokhlov, Yu.A., Preprint of Institute for High Energy Physics, National Research Center Kurchatov Institute, Protvino, 2019, no. 2019-2.

  3. Zitoun, R., ATL-LARG-2001-003, ATLAS Note, CERN, 2001.

    Google Scholar 

  4. Camarena, F., Castelo, J., and Fullana, E., ATL-TILECAL-2002-015, ATLAS Note, CERN, 2002.

    Google Scholar 

  5. Dorofeev, V.A., Ivashin, A.V., Kalendarev, V.V., Katchaev, I.A., Konstantinov, V.F., Matveev, V.D., Polyakov, B.F., Sugonyaev, V.P., Kholodenko, M.S., and Khokhlov, Yu.A., Instrum. Exp. Tech., 2016, vol. 59, no. 5, pp. 658–665. https://doi.org/10.1134/S0020441216040175

    Article  Google Scholar 

  6. Sen’ko, V.A., Soldatov, M.M., and Yakimchuk, V.I., Preprint of Institute for High Energy Physics, Protvino, 2012, no. 2012-19.

  7. https://www.caen.it/products/dt5740/.

  8. Ivashin, A.V., TDC-48DT Module. http://pcbech.ihep.su/~ivashin/tdc-48dtdoc.pdf. http://mail.ihep.ru/~ivashin/tdc-48dt-doc.pdf.

  9. Ivashin, A.V., Matveev, V.D., and Khokhlov, Yu.A., Preprint of Institute for High Energy Physics, Protvino, 2010, no. 2010-10.

  10. Analog Devices. AD9222–Octal, 12-bit, 40/50/65 MSPS Serial LVDS 1.8V A/D Converter. Rev. F. Data Sheet.

  11. Analog Devices. AD9516-0–14-Output Clock Generator with Integrated 2.8 GHz VCO. Rev C. Data Sheet.

  12. Cyclone III Device Handbook, v2.2., San Jose, CA: Altera Corp., 2008.

  13. Freescale Semiconductor, MPC8308 PowerQUICC II Pro Processor Reference Manual, Rev. 0, 04/2010. https://www.nxp.com/.

  14. CYPRESS, CY7C68001 EZ-USB SX2tm High Speed USB Interface Device. Revised November 20, 2013.

  15. Song, J., An, Q., and Lin, S., IEEE Trans. Nucl. Sci., 2006, vol. 53, no. 1, p. 236. https://doi.org/10.1109/TNS.2006.869820

    Article  ADS  Google Scholar 

  16. https://busybox.net/.

  17. https://buildroot.org/.

  18. https://www.kernel.org/.

  19. https://www.denx.de/wiki/U-Boot.

  20. http://urjtag.org/.

  21. Kachaev, I., http://bison.ihep.su/~kachaev/Powell/uobyqc-0.9.tar.gz.

  22. Powell, M.J.D., Math. Program.,Ser. B, 2002, vol. 92, p. 555.

    Google Scholar 

  23. Eremeev, D.R., Master’s Thesis, Moscow: Moscow Institute of Physics and Technology, 2017. http://www.ihep.ru/files/Eremeev_diploma.pdf.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.E. Filimonov for the mounting of the SADC and shaper modules and to V.G. Gotman for his participation in their testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivashin.

Additional information

Translated by N. Goryacheva

THE LIST OF ABBREVIATIONS AND SYMBOLS

THE LIST OF ABBREVIATIONS AND SYMBOLS

(VES) vertex spectrometer is the experiment with a fixed target on the U-70 accelerator, which operates on the secondary beam of negatively charged pions with a momentum of 29 GeV/c;

(ADC) analog-to-digital converter;

(SADC) sampling ADC;

(IADC) integrating ADC;

(FPGA) field programmable gate array, one of the possible programmable logic architectures;

(CPU) central processor unit;

(DDR SDRAM) double data rate synchronous dynamic random-access memory;

(DDR2 SDRAM) DDR SDRAM version 2;

(DMA) direct memory access;

(EEPROM) electrically erasable programmable read-only memory;

(Flash ROM) flash read-only memory, one of the EEPROM types;

(GPIO) general purpose input/output, a general purpose signal;

(ECC) error correcting code;

(IRQ) interrupt request;

(JTAG) IEEE 1149.1 boundary scan interface;

(LAB) logic array block, a structural unit of a Cyclone III FPGA;

(SPI) serial peripheral interface;

(USB) universal serial bus;

(TDL) tapped delay line;

(MC) microcontroller;

(DAQ) data acquisition system;

(PLL) phase locked loop;

(EMC) electromagnetic calorimeter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, E.V., Eremeev, D.R., Ivashin, A.V. et al. An Analog-to-Digital Converter Module with Signal Shape Digitization for the VES Experiment. Instrum Exp Tech 63, 165–182 (2020). https://doi.org/10.1134/S0020441220020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220020062

Navigation