Skip to main content
Log in

Experimental Setup of Ac Thermoelectric Power Measurements in a Cryocooler PPMS System and Its Implementation to Superconductors, Topological Insulator, and Thermoelectric Materials

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

We have designed and developed an experimental setup to measure the Seebeck coefficient of a variety of samples at cryogenic temperatures and under magnetic fields up to 7 T employing the physical property measurement system (PPMS). The measurement technique uses a low frequency ac thermal gradient generated by two thin film heaters in thermal contact with the sample. Heaters and temperature sensors are all fitted on a standard PPMS sample puck. The validity of this method is tested by measuring the thermoelectric power of several superconductors and thermoelectric samples. We have used this technique to measure the thermoelectric power of various topological insulator single crystals (Pb0.8Sn0.2Te, Bi2Te3, Bi2Se2.1Te0.9, and Sb2Te3). The developed hardware and software control is suitable for studying the thermoelectric power of small samples (length 2 mm) in a commercial cryomagnetic system (PPMS) and it allows for studying superconductor, semiconductor, thermoelectric, or topological insulator material in wide temperature (2–300 K) and magnetic field (0–7 T) ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. DiSalvo, F.J., Science, 1999, vol. 285, p. 703. https://doi.org/10.1126/science.285.5428.703

    Article  Google Scholar 

  2. Bell, L., Science, 2008, vol. 321, p. 1457. https://doi.org/10.1126/science.1158899

    Article  ADS  Google Scholar 

  3. Cyr-Choinire, O., Badoux, S., Grissonnanche, G., Michon, B., Afshar, S.A.A., Fortier, S., LeBoeuf, D., Graf, D., Day, J., Bonn, D. A., Hardy, W. N., Liang, R., Doiron-Leyraud, N., and Taillefer, L., Phys. Rev. X, 2017, vol. 7, p. 031042. https://doi.org/10.1103/PhysRevX.7.031042

    Google Scholar 

  4. Tapp, J.H., Tang, Z., Lv, B., Sasmal, K., Lorenz, B., Chu, P.C.W., and Guloy, A.M., Phys. Rev. B, 2008, vol. 78, p. 060505. https://doi.org/10.1103/PhysRevB.78.060505

    Article  ADS  Google Scholar 

  5. Goldsmid, H. and Sharp, J., J. Electron. Mater., 1999, vol. 28, p. 869. https://doi.org/10.1007/s11664-999-0211-y

    Article  ADS  Google Scholar 

  6. Martin, J., Tritt, T., and Uher, C., J. Appl. Phys., 2010, vol. 108, p. 121101. https://doi.org/10.1063/1.3503505

    Article  ADS  Google Scholar 

  7. Lv, B., Deng, L., Gooch, M., Wei, F., Sun, Y., Meen, J. K., Xue, Y.Y., Lorenz, B., and Chu, C.W., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, p. 15705. https://doi.org/10.1073/pnas.1112150108

    Article  ADS  Google Scholar 

  8. Gofryk, K., Griveau, J.-C., Riseborough, P.S., and Durakiewicz, T., Phys. Rev. B, 2016, vol. 94, p. 195117. https://doi.org/10.1103/PhysRevB.94.195117

    Article  ADS  Google Scholar 

  9. Hor, Y., Qu, D., Ong, N., and Cava, R.J., J. Phys.: Condens. Matter, 2010, vol. 22, p. 375801. https://doi.org/10.1088/0953-8984/22/37/375801

    Google Scholar 

  10. Matusiak, M., Cooper, J., and Kaczorowski, D., Nat. Commun., 2017, vol. 8, p. 15219. https://doi.org/10.1038/ncomms15219

    Article  ADS  Google Scholar 

  11. Qu, D.-X., Hor, Y.S., and Cava, R.J., Phys. Rev. Lett., 2012, vol. 109, p. 246602. https://doi.org/10.1103/PhysRevLett.109.246602

    Article  ADS  Google Scholar 

  12. Liang, T., Gibson, Q., Xiong, J., Hirschberger, M., Koduvayur, S.P., Cava, R., and Ong, N., Nat. Commun., 2013, vol. 4, p. 2696. https://doi.org/10.1038/ncomms3696

    Article  ADS  Google Scholar 

  13. Stockert, U., Reis, R., Ajeesh, M.O., Watzman, S.J., Schmidt, M., Shekhar, C., Heremans, J.P., Baenitz, C.M., and Nicklas, M., J. Phys.: Condens. Matter, 2017, vol. 29, p. 325701. https://doi.org/10.1088/1361-648X/aa7a3b

    Google Scholar 

  14. Fauque, B., Butch, N.P., Syers, P., Paglione, J., Wiedmann, S., Collaudin, A., Grena, B., Zeitler, U., and Behnia, K., Phys. Rev. B, 2013, vol. 87, p. 035133. https://doi.org/10.1103/PhysRevB.87.035133

    Article  ADS  Google Scholar 

  15. Zhou, Z. and Uher, C., Rev. Sci. Instrum., 2005, vol. 76, p. 023901. https://doi.org/10.1063/1.1835631

    Article  ADS  Google Scholar 

  16. Rouleau, O. and Alleno, E., Rev. Sci. Instrum., 2013, vol. 84, p. 105103. https://doi.org/10.1063/1.4823527

    Article  ADS  Google Scholar 

  17. Ponnambalam, V., Lindsey, S., Hickman, N.S., and Tritt, T.M., Rev. Sci. Instrum., 2006, vol. 77, p. 073904. https://doi.org/10.1063/1.2219734

    Article  ADS  Google Scholar 

  18. Liu, J., Zhang, Y., Wang, Z., Li, M., Su, W., Zhao, M., Huang, S., Xia, S., and Wang, C., Rev. Sci. Instrum., 2016, vol. 87, p. 064701. https://doi.org/10.1063/1.4952744

    Article  ADS  Google Scholar 

  19. Fu, Q., Xiong, Y., Zhang, W., and Xu, D., Rev. Sci. Instrum., 2017, vol. 88, p. 095111. https://doi.org/10.1063/1.4990634

    Article  ADS  Google Scholar 

  20. Choi, E.S., Brooks, J.S., Qualls, J.S., and Song, Y.S., Rev. Sci. Instrum., 2001, vol. 72, p. 2392. https://doi.org/10.1063/1.1353192

    Article  ADS  Google Scholar 

  21. Resel, R., Gratz, E., Burkov, A.T., Nakama, T., Higa, M., and Yagasaki, K., Rev. Sci. Instrum., 1996, vol. 67, p. 1970. https://doi.org/10.1063/1.1146953

    Article  ADS  Google Scholar 

  22. Freeman, R.H. and Bass, J., Rev. Sci. Instrum., 1970, vol. 41, p. 1171. https://doi.org/10.1063/1.1684751

    Article  ADS  Google Scholar 

  23. Kettler, W.H. and Rosenberg, M., Rev. Sci. Instrum., 1986, vol. 57, p. 3053. https://doi.org/10.1063/1.1139195

    Article  ADS  Google Scholar 

  24. Wang, K., Graf, D., and Petrovic, C., Phys. Rev. B, 2014, vol. 89, p. 125202. https://doi.org/10.1103/PhysRevB.89.125202

    Article  ADS  Google Scholar 

  25. Gooch, M., Lv, B., Deng, L.Z., Muramatsu, T., Meen, J., Xue, Y.Y., Lorenz, B., and Chu, C.W., Phys. Rev. B, 2011, vol. 84, p. 184517. https://doi.org/10.1103/PhysRevB.84.184517

    Article  ADS  Google Scholar 

  26. Gooch, M., Lv, B., Lorenz, B., Guloy, A.M., and Chu, C.W., J. Appl. Phys., 2010, vol. 107, p. 09. https://doi.org/10.1063/1.3362932

  27. Lin, H., Das, T., Wray, L.A., Xu, S.-Y., Hasan, M.Z., and Bansil, A., New J. Phys., 2011, vol. 13, p. 095005. https://doi.org/10.1088/1367-2630/13/9/095005

    Article  ADS  Google Scholar 

  28. Shrestha, K., Marinova, V., Graf, D., Lorenz, B., and Chu, C.W., Phys. Rev. B, 2017, vol. 95, p. 075102. https://doi.org/10.1103/PhysRevB.95.075102

    Article  ADS  Google Scholar 

  29. Tanaka, Y., Sato, T., Nakayama, K., Souma, S., Takahashi, T., Ren, Z., Novak, M., Segawa, K., and Ando, Y., Phys. Rev. B, 2013, vol. 87, p. 155105. https://doi.org/10.1103/PhysRevB.87.155105

    Article  ADS  Google Scholar 

  30. Gao, X. and Daw, M.S., Phys. Rev. B, 2008, vol. 77, p. 033103. https://doi.org/10.1103/PhysRevB.77.033103

    Article  ADS  Google Scholar 

  31. Shrestha, K., Marinova, V., Lorenz, B., and Chu, P.C.W., Phys. Rev. B, 2014, vol. 90, p. 241111. https://doi.org/10.1103/PhysRevB.90.241111

    Article  ADS  Google Scholar 

  32. Shrestha, K., Chou, M., Graf, D., Yang, H.D., Lorenz, B., and Chu, C.W., Phys. Rev. B, 2017, vol. 95, p. 195113. https://doi.org/10.1103/PhysRevB.95.195113

    Article  ADS  Google Scholar 

  33. Shrestha, K., Graf, D.E., Marinova, V., Lorenz, B., and Chu, C.W., Philos. Mag., 2017, vol. 97, p. 1740. https://doi.org/10.1080/14786435.2017.1314563

    Article  ADS  Google Scholar 

  34. Shrestha, K., Marinova, V., Graf, D., Lorenz, B., and Chu, C.W., J. Appl. Phys., 2017, vol. 122, p. 125901. https://doi.org/10.1063/1.4998575

    Article  ADS  Google Scholar 

  35. Shrestha, K., Graf, D., Marinova, V., Lorenz, B., and Chu, C.W., J. Appl. Phys., 2017, vol. 122, p. 145901. https://doi.org/10.1063/1.4997947

    Article  ADS  Google Scholar 

  36. Ziman, J.M., Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford: Clarendon Press, 1960.

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported in part by the U.S. Air Force Office of Scientific Research Grant FA9550-15-1-0236, the T.L.L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Chu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, K., Gooch, M., Lorenz, B. et al. Experimental Setup of Ac Thermoelectric Power Measurements in a Cryocooler PPMS System and Its Implementation to Superconductors, Topological Insulator, and Thermoelectric Materials. Instrum Exp Tech 62, 298–303 (2019). https://doi.org/10.1134/S002044121902026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044121902026X

Navigation