Skip to main content
Log in

A Source of Low-Temperature Nonequilibrium Argon Plasma

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A source of low-temperature nonequilibrium argon plasma has been developed on the basis of a special form of the diffusion discharge, that is, a glow discharge on which low-current spark discharges are superimposed. The discharge is created in an argon flow in the form of atmospheric pressure jets. The nature of the current flow in the discharge gap is a steady-state condition of periodic current pulses. The PortPlaSter portable plasma sterilizer has been created based on the plasma source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Korolev, Yu.D., Russ. J. Gen. Chem., 2015, vol. 85, no. 5, p. 1311. https://doi.org/10.1134/S1070363215050473

    Article  Google Scholar 

  2. Schutze, A., Jeong, J.Y., Babayan, S.E., Park, J., Selwyn, G.S., and Hicks, R.F., IEEE Trans. Plasma Sci., 1998, vol. 26, no. 6, p. 1685. https://doi.org/10.1109/27.747887

    Article  ADS  Google Scholar 

  3. Kirillov, A.A., Pavlova, A.V., Safronov, E.A., Simonchik, L.V., and Dudchik, N.V., Prikl. Fiz., 2013, no. 5, p. 52.

  4. Sosnin, E.A., Panarin, V.A., Skakun, V.S., Tarasenko, V.F., Pechenitsin, D.S., and Kuznetsov, V.S., Tech. Phys., 2016, vol. 61, no. 5, p. 789.

    Article  Google Scholar 

  5. Savkin, K.P., Nikolaev, A.G., Oks, E.M., Yushkov, G.Yu., and Shandrikov, M.V., Usp. Prikl. Fiz., 2017, vol. 5, no. 6, p. 549.

    Google Scholar 

  6. Korolev, Yu.D., Frants, O.B., Nekhoroshev, V.O., Suslov, A.I., Kas’yanov, V.S., Shemyakin, I.A., and Bolotov, A.V., Plasma Phys. Rep., 2016, vol. 42, no. 6, p. 592. https://doi.org/10.1134/S1063780X16060052

    Article  ADS  Google Scholar 

  7. Montie, T.C., Kelly-Wintenberg, K., and Roth, J.R., IEEE Trans. Plasma Sci., 2000, vol. 28, p. 41.

    Article  ADS  Google Scholar 

  8. Daeschlein, G., von Woedtke, T., Kindel, E., Brandenburg, R., Weltmann, K.-D., and Jünger, M., Plasma Processes Polym., 2010, vol. 7, nos. 3–4, p. 224. https://doi.org/10.1002/ppap.200900059

    Article  Google Scholar 

  9. Lee, H.W., Nam, S.H., Mohamed, A.H., Kim, G.C., and Lee, J.K., Plasma Processes Polym., 2010, vol. 7, nos. 3–4, p. 274. https://doi.org/10.1002/ppap.200900083

    Article  Google Scholar 

  10. Jeong, J.Y., Babayan, S.E., Tu, V.J., Park, J., Henins, I., Hicks, R.F., and Selwyn, G.S., Plasma Sources Sci. Technol., 1998, vol. 7, no. 4, p. 282. https://doi.org/10.1088/0963-0252/7/3/005

    Article  ADS  Google Scholar 

  11. Fricke, K., Steffen, H., Woedtke, T., Schröder, K., and Weltmann, K.-D., Plasma Processes Polym., 2011, vol. 8, no. 1, p. 51. https://doi.org/10.1002/ppap.201000093

    Article  Google Scholar 

  12. Ermakov, A.M., Ermakova, O.N., Maevskii, E.I., Vasil’ev, M.M., Petrov, O.F., and Fortov, V.E., Medline.ru., 2010, vol. 11, p. 160.

  13. Ermakov, A.M., Maevskii, E.I., Vasil’ev, M.M., Petrov, O.F., and Fortov, V.E., Medline.ru., 2011, vol. 12, p. 948.

  14. Foest, R., Kindel, E., Ohl, A., Stieber, M., and Weltmann, K.-D., Plasma Phys. Controlled Fusion, 2005, vol. 47, no. 12B, p. B525. https://doi.org/10.1088/0741-3335/47/12B/S38

    Article  Google Scholar 

  15. Ehlbeck, J., Ohl, A., Ma, M., Krohmann, U., and Neumann, T., Surf. Coat. Technol., 2003, vols. 174–175, p. 493. https://doi.org/10.1016/S0257-8972(03)00652-2

    Article  Google Scholar 

  16. Weltmann, K.D., Brandenburg, R., von Woedtke, T., Ehlbeck, J., Foest, R., Stieber, M., and Kindel, E., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 194008. https://doi.org/10.1088/0022-3727/41/19/194008

    Article  ADS  Google Scholar 

  17. Shimizu, T., Nosenko, T., Morfill, G.E., Sato, T., Schmidt, H.-U., and Urayama, T., Plasma Processes Polym., 2010, vol. 7, p. 288. https://doi.org/10.1002/ppap.200900085

    Article  Google Scholar 

  18. Shimizu, T., Steffes, B., Pompl, R., Jamitzky, F., Bunk, W., Ramrath, K., Georgi, M., Stolz, W., Schmidt, H.-U., Urayama, T., Fujii, S., and Morfill, G.E., Plasma Processes Polym., 2008, vol. 5, p. 577. https://doi.org/10.1002/ppap.200800021

    Article  Google Scholar 

  19. Isbary, G.A., Morfill, G., Schmidt, H.U., Georgi, M., Ramrath, K., Heinlin, J., Karrer, S., Landthaler, M., Shimizu, T., Steffes, B., Bunk, W., Monetti, R., Zimmermann, J.L., Pompl, R., and Stolz, W., Br. J. Dermatol., 2010, vol. 163, p. 78. https://doi.org/10.1111/j.1365-2133.2010.09744.x

    Google Scholar 

  20. Isbary, G., Zimmermann, J.L., Shimizu, T., Li, Y.F., Morfill, G., Thomas, H.M., Steffes, B., Heinlin, J., Karrer, S., and Stolz, W., Clin. Plasma Med., 2013, vol. 1, p. 19. https://doi.org/10.1016/j.cpme.2013.06.001

    Article  Google Scholar 

  21. Isbary, G., Heinlin, J., Shimizu, T., Zimmermann, J.L., Morfill, G., Schmidt, H.U., Monetti, R., Steffes, B., Bunk, W., Li, Y., Klaempfl, T., Karrer, S., Landthaler, M., and Stolz, W., Br. J. Dermatol., 2012, vol. 167, p. 404. https://doi.org/10.1111/j.1365-2133.2012.10923.x

    Article  Google Scholar 

  22. Maevskii, E.I., Bogdanova, L.A., Selezneva, I.I., Davydova, G.A., Murashev, A.N., Ermolaeva, S.A., Varfolomeev, A.F., Yurov, D.S., Petrov, O.F., Vasi-l’ev, M.M., Fortov, V.E., Didkovskii, N.A., Malashenkova, I.K., Vladimirov, I.V., and Malashenkov, D.K., Biomed. Zh., 2009, vol. 10, p. 198.

    Google Scholar 

  23. Korolev, Y.D. and Mesyats, G.A., Physics of Pulsed Breakdown in Gases, Yekaterinburg: Ural Branch Russ. Acad. Sci., 1998.

    Google Scholar 

  24. Bazelyan, E.M. and Raizer, Yu.P., Iskrovoi razryad (A Spark Discharge), Moscow: Moscow Institute of Physics and Technology, 1997.

  25. Meek, J.M. and Craggs, J.D., Electrical Breakdown of Gases, Oxford: Clarendon Press, 1953.

    MATH  Google Scholar 

  26. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1992.

  27. Akishev, Yu.S., Aponin, G.I., Grushin, M.E., Karal’nik, V.B., Monich, A.E., Pan’kin, M.V., and Trushkin, N.I., Plasma Phys. Rep., 2007, vol. 33, no. 7, p. 584. https://doi.org/10.1134/S1063780X07070082

    Article  ADS  Google Scholar 

  28. Rep’ev, A.G., Repin, P.B., and Danchenko, N.G., Tech. Phys. Lett., 2007, vol. 33, no. 12, p. 1011.

    Article  ADS  Google Scholar 

  29. Baldanov, B.B., Semenov, A.P., Ranzhurov, Ts.V., Nikolaev, E.O., and Gomboeva, S.V., Tech. Phys., 2015, vol. 60, no. 11, p. 1729.

    Article  Google Scholar 

  30. Semenov, A.P., Baldanov, B.B., Ranzhurov, Ts.V., Norboev, Ch.N., Namsaraev, B.B., Dambaev, V.B., Gomboeva, S.V., and Abidueva, L.R., Prikl. Fiz., 2014, no. 3, p. 47.

  31. Semenov, A.P., Baldanov, B.B., Ranzhurov, Ts.V., and Norboev, Ch.N., RF Patent 2638569, Byull. Izobret., 2017, no. 35. http://www1.fips.ru/ofpstorage/IZPM/2017.12.14 /RUNWC1/000/000/002/638/569/ %D0%98%D 0%97-02638569-00001/document.pdf.

  32. Semenov, A.P., Baldanov, B.B., Ranzhurov, Ts.V., Norboev, Ch.N., Namsaraev, B.B., Dambaev, V.B., Gomboeva, S.V., and Abidueva, L.R., Usp. Prikl. Fiz., 2014, vol. 2, no. 3, p. 229.

    Google Scholar 

  33. Semenov, A.P., Baldanov, B.B., Ranzhurov, C.V., Nikolaev, E.O., and Gomboeva, S.V., Sib. Sci. Med. J., 2016, vol. 36, no. 1, p. 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Semenov.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, A.P., Baldanov, B.B. & Ranzhurov, T.V. A Source of Low-Temperature Nonequilibrium Argon Plasma. Instrum Exp Tech 62, 432–435 (2019). https://doi.org/10.1134/S0020441219020258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219020258

Navigation