Skip to main content
Log in

The Effect of Radiation Defects in a Metal Target on the Error in the Thermal-Imaging Diagnostics of Powerful Ion Beams

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstrac

t—The results of studying the influence of radiation defects on the error of measuring the total energy of a high-intensity pulsed ion beam and its cross-sectional distribution using the thermal-imaging diagnostics (TID) are presented. The investigations were carried out at the TEMP-6 accelerator (200–250 kV, 120 ns) during operation of an ion diode in the mode of self-magnetic insulation of electrons. The ion beam consisted of С+ carbon ions (85%) and protons; the energy density at the focus was 1–5 J/cm2. It was found that when targets of different metals (titanium, stainless steel, and copper) are used, the readings of the TID differed by 40–60% for the energy-density instability in a pulse train (for a single target) of at most 10%. The causes of errors in the energy-density measurements were analyzed. It is shown that when a metal target is irradiated with a powerful ion beam, a significant number of radiation defects are formed in it. The ion-energy losses on their formation are proportional to the initial thermal energy in the target after its irradiation with the ion beam and have values of 22% in stainless steel, 30% in copper, and 70% in titanium targets. When the ion-energy loss on the formation of radiation defects is taken into account, the error of the TID technique does not exceed 15% when using targets of different metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bystritskii, V.M. and Didenko, A.N., Moshchnye ionnye puchki (Powerful Ion Beams), Moscow: Energoatomizdat, 1984.

  2. Yu Xiao, Shen Jie, Qu Miao, Zhong Haowen, Zhang Jie, Zhang Yanyan, Yan Sha, Zhang Gaolong, Zhang Xiaofu, and Le Xiaoyun, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, vol. 365, p. 225. https://doi.org/10.1016/j.nimb.2015.07.061

    Google Scholar 

  3. Boiko, V.I., Skvortsov, V.A., Fortov, V.E., and Shamanin, I.V., Vzaimodeistvie impul’snykh puchkov zaryazhennykh chastits s veshchestvom (Interaction between Pulse Charged Particles Beams and Matter), Moscow: Fizmatlit, 2003.

  4. Moskalev, V.A. and Sergeev, G.I., Izmerenie parametrov puchkov zaryazhennykh chastits (Measurement of Charged Particles Beams Parameters), Moscow: Energoatomizdat, 1991.

  5. Christodoulides, C.E. and Freeman, J.H., Nucl. Instrum. Methods, 1976, vol. 135, no. 1, p. 13.

    Article  ADS  Google Scholar 

  6. Janovský, I. and Miller, A., Int. J. Radiat. Appl. Instrum., Part A, 1987, vol. 38, p. 931. https://doi.org/10.1016/0883-2889(87)90263-2

    Google Scholar 

  7. Davis, H.A., Bartsch, R.R., Olson, J.C., Rej, D.J., and Waganaar, W.J., J. Appl. Phys., 1997, vol. 82, p. 3223. https://doi.org/10.1063/1.365629

    Article  ADS  Google Scholar 

  8. Isakova, Yu.I. and Pushkarev, A.I., Instrum. Exp. Tech., 2013, vol. 56, no. 2, pp. 185–192. https://doi.org/10.1134/S0020441213020085

    Article  Google Scholar 

  9. Pushkarev, A.I., Isakova, Yu.I., and Khailov, I.P., Instrum. Exp. Tech., 2015, vol. 57, no. 5, p. 667. https://doi.org/10.1134/I.S0020441215040090

    Article  Google Scholar 

  10. Zhu, X.P., Ding, L., Zhang, Q., Pushkarev A.I., and Lei, M.K., Instrum. Exp. Tech., 2017, vol. 60, no. 4, pp. 562–569. https://doi.org/10.1134/S0020441217030277

    Article  Google Scholar 

  11. Yu, X., Shen, J., Qu, M., Liu, W., Zhong, H., Zhang, J., Yan, S., Zhang, G., and Le, X., Rev. Sci. Instrum., 2015, vol. 86, p. 83305. https://doi.org/10.1063/1.4928069

    Article  Google Scholar 

  12. Pushkarev, A., Kholodnaya, G., Sazonov, R., and Ponomarev, D., Rev. Sci. Instrum., 2012, vol. 83, p. 103301. https://doi.org/10.1063/1.4756689

    Article  ADS  Google Scholar 

  13. Ozur, G.E., Proskurovsky, D.I., Rotshtein, V.P., and Markov, A.B., Laser Part. Beams, 2003, vol. 21, no. 2, pp. 157–174. https://doi.org/10.1017/S0263034603212040

    Article  ADS  Google Scholar 

  14. Gribkov, V.A., Grigor’ev, F.I., Kalin, B.A., and Yakushin, B.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov (Promising Radiation-Beam Technologies for Materials Processing), Moscow: Kruglyi God, 2001.

  15. Trushin, Yu.V., Fizicheskoe materialovedenie (Physical Materials Science), St. Petersburg: Nauka, 2000.

  16. Bystrov, L.N., Ivanov, L.I., and Ustinovschikov, V.M., Radiat. Eff., 1983, vol. 79, nos. 1–4, p. 63. https://doi.org/10.1080/00337578308207396

    Article  Google Scholar 

  17. Van Renterghem, W., Mazouzi, A., and Dyck, S., J. Nucl. Mater., 2011, vol. 413, no. 2, p. 95.

    Article  ADS  Google Scholar 

  18. Shimada, M., Nakahigashi, S., and Terasawa, M., J. Nucl. Sci. Technol., 1976, vol. 13, no. 12, p. 743. https://doi.org/10.1080/18811248.1976.9734100

    Article  Google Scholar 

  19. Zhu, X.P., Lei, M.K., and Ma, T.C., Rev. Sci. Instrum., 2002, vol. 73, no. 4, p. 1728. https://doi.org/10.1063/1.1455137

    Article  ADS  Google Scholar 

  20. Incropera, F.P. and Dewitt, D.P., Fundamentals of Heat and Mass Transfer, Wiley, 1990.

    Google Scholar 

  21. Yu Xiao, Shen Jie, Qu Miao, Liu Wenbin, Zhong Haowen, Zhang Jie, Zhang Yanyan, Yan Sha, Zhang Gaolong, Zhang Xiaofu, and Le Xiaoyun, Vacuum, 2015, vol. 113, p. 36. https://doi.org/10.1016/j.vacuum.2014.12.003

    Article  ADS  Google Scholar 

  22. Terentyev, D.A., Malerba, L., and Hou, M., Phys. Rev. B, 2007, vol. 75, p. 104108. https://doi.org/10.1103/PhysRevB.75.104108

    Article  ADS  Google Scholar 

  23. Wirth, B.D., Odette, G.R., Maroudas, D., and Lucas, G.E., J. Nucl. Mater., 2000, vol. 276, nos. 2–3, p. 33. https://doi.org/10.1016/S0022-3115(99)00166-X

    Article  ADS  Google Scholar 

  24. Ohsawa, K. and Kuramoto, E., Phys. Rev. B, 2005, vol. 72, p. 054105. https://doi.org/10.1103/PhysRevB.72.054105

    Article  ADS  Google Scholar 

  25. Mendelev, M.I., Underwood, T.L., and Ackland, G.J., J. Chem. Phys., 2016, vol. 145, p. 154102. https://doi.org/10.1063/1.4964654

    Article  ADS  Google Scholar 

  26. Satoh, Y., Sohtome, T., Abe, H., Matsukawa, Y., and Kano, S., Philos. Mag., 2017, vol. 97, no. 9, p. 638. https://doi.org/10.1080/14786435.2016.1275867

    Article  ADS  Google Scholar 

  27. Oberdorfer, B., Steyskal, E., Sprengel, W., Pikart, W., Hugenschmidt, C., Zehetbauer, M., Pippan, R., Schmid, E., and Wurschum, R., Phys. Rev. Lett., 2010, vol. 105, p. 146101. https://doi.org/10.1103/PhysRevLett.105.146101

    Article  ADS  Google Scholar 

  28. Setman, D., Kerber, M.B., Schafler, E., and Zehetbauer, M.J., Metall. Mater. Trans. A, 2010, vol. 41, p. 810. https://doi.org/10.1007/s11661-009-0058-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation (project no. 17-79-10140), National Natural Science Foundation of China under Grants no. 51371043 and 51621064, and High-end Foreign Experts Recruitment Program of China under Grant GDW2017210029.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Pushkarev or M. K. Lei.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, Y.I., Prima, A.I., Zhu, X.P. et al. The Effect of Radiation Defects in a Metal Target on the Error in the Thermal-Imaging Diagnostics of Powerful Ion Beams. Instrum Exp Tech 62, 201–207 (2019). https://doi.org/10.1134/S002044121901007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044121901007X

Navigation