Skip to main content
Log in

The critical aspects in the design of high-current inductors

  • Electronics and Radio Engineering
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

High-voltage high-current inductors are important components of power-supply systems that are based on capacitor banks with a high energy capacity. The main aspects of designing high-current inductors that were obtained via numerical simulation are presented. A harmonic analysis was performed to take the influence of eddy currents on the inductance value and mechanical stresses into account. It was shown that the choice of materials significantly influences the parameters of the inductor. Calculations of the stray magnetic field in a quasi-toroidal assembly of inductors were performed. It is shown that the leakage magnetic field in the far-field zone is two orders of magnitude lower for an assembly of four inductors than for one inductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinkel, D.E., Edwards, M.J., Amendt, P.A., Benedetti, R., Berzak Hopkins, L., Bleuel, D., Boehly, T.R., Bradley, D.K., Caggiano, J.A., Callahan, D.A., Celliers, P.M., Cerjan, C.J., Clark, D., Collins, G.W., Dewald, E.L., et al., Plasma Phys. Control. Fusion., 2013, vol. 55, no. 12, p. 124015. doi 10.1088/0741-3335/ 55/12/124015

    Article  ADS  Google Scholar 

  2. Kovalchuk, B.M., Kim, A.A., Kharlov, A.V., Kumpyak, E.V., Tsoy, N.V., Visir, V.A., Smorudov, G.V., Kiselev, V.N., Chupin, V.V., Bayol, F., Frescaline, L., Cubaynes, F., Drouilly, C., Eyl, P., Cassany, B., Courtois, L., Patelli, P., Mexmain, J.-M., and de Cervens, D.R., IEEE Trans. Plasma Sci., 2008, vol. 6, no. 9, Part 3, p. 7. doi 10.1109/TPS.2008.2004242

    Google Scholar 

  3. Fair, H.D., IEEE Trans. Magnetics, 2001, vol. 37, no. 1, part 1, p. 25. doi 0.1109/20.911783

    Article  ADS  Google Scholar 

  4. Aubert, G., Jongbloets, H.W.H.M., Jess, W., Picoche, J.C., Plante, A., Rub, P., and Vallier, J.C., IEEE Trans. Magnetics, 1994, vol. 30. no. 4, part 2, p. 1541. doi 10.1109/20.305559

    Article  ADS  Google Scholar 

  5. Novac, B.M., Smith, I.R., Senior, P., Parker, M., and Louverdis, G., Rev. Sci. Instrum., 2010, vol. 81, no. 5, p. 054706. doi 10.1063/1.3428726

    Article  ADS  Google Scholar 

  6. Kovalchuk, B.M., Kharlov, A.V., Zherlytsyn, A.A., Kumpyak, E.V., and Tsoy, N.V., Rev. Sci. Instrum., 2016, vol. 87, no. 6, p. 063505. http://dx.doi.org/ doi 10.1063/1.4954504

    Article  ADS  Google Scholar 

  7. Anderson, R.A., Clancy, T.J., Fulkerson, S., Petersen, D., Pendelton, D., Hulsey, S., Ullery, G., Tuck, J., Polk, M., Kamm, R., Newton, M., Moore, W.B., Arnold, P., Ollis, C., Hinz, A., and Robb, C., Proc. 4th IEEE Pulsed Power Conf., Dallas, Texas, 2003, p. 793.

    Google Scholar 

  8. Pignari, S.A., Spadacini, G., and Fedeli, E., IEEE Trans. Electromagnetic Compatibility, 2011, vol. 53, no. 3, p. 638. doi 10.1109/TEMC.2011.2157510

    Article  Google Scholar 

  9. Chen, Y.G., Crumley, R., Lloyd, S., and Baum, C.E., IEEE Trans. Electromagnetic Compatibility, 1988, vol. 30, no. 3, p. 345. doi 10.1109/15.3313

    Article  Google Scholar 

  10. Sergeant, P., Dupré, L., and Melkebeek, J., IEEE Proc.: Electric Power Appl., 2005, vol. 152, no. 5, p. 1359. doi 10.1049/ip-epa:20050005

    Google Scholar 

  11. Froidurot, B., Rouve, L.-L., Foggia, A., Bongiraud, J.-P., and Meunier, G., IEEE Proc.: Science, Measur. Technol., 2002, vol. 149, no. 5, p. 190. doi 10.1049/ipsmt: 200206231

    Google Scholar 

  12. NWL inductors, http://www.nwl.com/contents/view/30

  13. Newton, M.A., Fulkerson, E.S., Hulsey, S.D, Kamm, R.E., and Pendleton, D.L., Proc. 13th IEEE Pulsed Power Conf., Las Vegas, 2001, p. 401.

    Google Scholar 

  14. McNab, I.R., Fish, S., and Stefani, F., IEEE Trans. Magnetics, 2001, vol. 37, no. 1, part 1, p. 223. doi 10.1109/20.911826

    Article  ADS  Google Scholar 

  15. Lv, Y., Qiu, L., Zhang, S., Tang, Y., and Li, L., IEEE Trans. Appl. Supercond., 2010, vol. 20, no. 3, p. 1211. doi 10.1109/TASC.2010.2042799

    Article  ADS  Google Scholar 

  16. Lv, Y., Qiu, L., Tang, Y., and Li, L., IEEE Trans. Appl. Supercond., 2010, vol. 20, no. 3, p. 1936. doi 10.1109/ TASC.2010.204464

    Article  ADS  Google Scholar 

  17. Kharlov, A.V., Kovalchuk, B.M., Kumpyak, E.V., Smorudov, G.V., and Tsoy, N.V., Laser and Particle Beams, 2014, vol. 32, no. 3, p. 471. doi 10.1017/ S0263034614000408

    Article  ADS  Google Scholar 

  18. QuickField Finite Element Analysis System Version 6.0 User’s Guide, Tera Analysis Ltd. 2013. http://quickfield.com/free_doc.htm

  19. Kovalchuk, B.M., Kim, A.A., Kharlov, A.V., Kumpyak, E.V., Tsoy, N.V., Vizir, V.V., and Zorin, V.B., Rev. Sci. Instrum., 2008, vol. 79, no. 5, p. 053504. doi 10.1063/1.2929670

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kharlov.

Additional information

Original Russian Text © A.V. Kharlov, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 6, pp. 51–57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharlov, A.V. The critical aspects in the design of high-current inductors. Instrum Exp Tech 60, 826–832 (2017). https://doi.org/10.1134/S0020441217060045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217060045

Navigation