Skip to main content
Log in

A gas-discharge plasma focuser

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A device is proposed for the formation of a gas-discharge plasma stream with a sinusoidal distribution of the charged-particle density over the stream cross section, which is achieved by using wavy shapes of the anode and cathode surfaces that are placed coaxially relative to each other at the distance λ e < h < 3λ e , where λ e is the mean free path of an electron in the gas-discharge plasma stream. The anode is a stainless steel grid with mesh dimensions of 1 × 1 mm. The aluminum cathode is 120 mm in diameter and 50-mm thick. The device provides a discharge current of up to 0.6 А at a controlled voltage at the electrodes in the range of 0.21–0.7 kV. In this case, plasma streams propagate to a distance of up to 50λ e beyond the limits of the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Putrya, M.G., Plazmennye metody formirovanoya trekhmernykh struktur UBIS (Plasma Methods for the Formation of Three-Dimensional Structures of Ultralarge-Scale Integrated Circuits), Moscow: MIET, 2005.

    Google Scholar 

  2. Metody kompyuternoi optiki (Computer Optics Methods), Soifer, V.A., Ed., Moscow: Fizmatlit, 2003.

  3. Diffractive Nanophotonics, Soifer, V.A., Ed., London: Taylor, 2014.

  4. Jackman, R.J., Wilbur, J.L., and Whitesides, G.M., Science, 1995, vol. 269, no. 5224, p. 664.

    Article  ADS  Google Scholar 

  5. Rogers, J.A., Jackman, R.J., and Whitesides, G.M., Adv. Mater., 1997, vol. 9, no. 6, p. 475. doi 10.1002/adma.19970090603

    Article  Google Scholar 

  6. Petruczok, C.D. and Gleason, K.K., Adv. Mater., 2012, vol. 24, no. 48, p. 6445. doi 10.1002/adma.201201975

    Article  Google Scholar 

  7. Greisukh, G.I., Bobrov, S.T., and Stepanov, S.A., Optics of Diffractive and Gradient-Index Elements and Systems, Bellingham, WA: SPIE Press, 1997.

    Google Scholar 

  8. Kolpakov, V.A., Kolpakov, A.I., and Krichevskiy, S.V., Instrum. Exp. Tech., 2014, vol. 57, no. 2, p. 147. doi 10.1134/S0020441214020183

    Article  Google Scholar 

  9. Kolpakov, V.A., Krichevskiy, S.V., and Markushin M.A., Instrum. Exp. Tech., 2015, vol. 58, no. 5, p. 683. doi doi 10.1134/S0020441215040193

    Article  Google Scholar 

  10. Wagner, I.V., Bolgov, E.I., Grakun, V.F., Gokhweld, V.L., and Kudlai, V.A., Tech. Phys. Russ. J. Appl. Phys., 1974, vol. 19, no. 8, p. 1042.

    Google Scholar 

  11. Baranov, I.A., Martynenko, Yu.V., Tsepelevich, S.O., and Yavlinskii, Yu.N., Phys. Usp., 1988, vol. 31, no. 11, p. 1015.

    Article  ADS  Google Scholar 

  12. Korolev, M.A., Tekhnologiya, konstrukrsii i metody modelirovaniya kremnievykh integral’nykh mikroslhem. Ch. 1. Tekhnologicheskie protsessy izgotovleniya kremnievykh integral’nykh mikroslhem i ikh modelirovanie (Technology, Constructions, and Methods of Simulation of Silicon Integrated Microcircuits. Part 1. Technological Processes of Production of Silicon Integrated Microcircuits and Their Simulation), Moscow: BINOM, 2015.

    Google Scholar 

  13. Soifer, V.A., Kazanskiy, N.L., Kolpakov, V.A., and Kolpakob, A.I., RF Patent 2339191 Byull. Izobret., 2008, no.32.

  14. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Nauka, 1992.

    Google Scholar 

  15. Kazanskiy, N.L. and Kolpakov, V.A., Study of formation mechanisms of low-temperature plasma by gas discharge of the high-voltage type, in Kompyuternaya optika (Computer Optics), no. 25, pp. 112–116, 2003.

    Google Scholar 

  16. Kazanskiy, N.L. and Kolpakov, V.A., Formirovanie opticheskogo mikroreliefa vo vneelektrodnoi plazme vysokovol’tnogo gazovogo razryada (Formation of an Optical Microrelief in Extraelectrode High-Voltage Gas-Discharge Plasma), Moscow: Radio i Svyaz’, 2009.

    Google Scholar 

  17. Kolpakov, V.A., Krichevskiy, S.V., and Markushin, M.A., Instrum. Exp. Tech., 2015, vol. 58, no. 5, p. 653. doi 10.1134/S002044121504020X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolpakov.

Additional information

Original Russian Text © N.L. Kazanskiy, V.A. Kolpakov, S.V. Krichevskiy, N.A. Ivliev, M.A. Markushin, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 5, pp. 142–145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazanskiy, N.L., Kolpakov, V.A., Krichevskiy, S.V. et al. A gas-discharge plasma focuser. Instrum Exp Tech 60, 748–751 (2017). https://doi.org/10.1134/S0020441217040157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217040157

Navigation