Skip to main content
Log in

A device for monitoring the distribution of particles of off-electrode high-voltage gas-discharge plasma over the stream cross section using the curved-cavity method

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A device for monitoring the particle distribution over the cross section of a low-temperature offelectrode plasma stream, which is produced by a gas discharge, is proposed. Particles are collected with a stack of metallic tubes, which are bent at an angle of 0 < β < 90° and are linearly arranged over the plasmastream cross section. The inner (D) and outer (d 2) diameters of the tubes correspond to the conditions d 1 < D < d 1 + 0.4L, d 2 < d 1 + L, which allow a significant decrease in the fraction of plasma particles reflected from the end surfaces of tubes (d 1 is the diameter of the holes in the plate that form microstreams of charged particles, and L is the distance between these holes). The fulfillment of the above conditions and manufacturing of the ends of the curved tubes in the form of a cone completely eliminate the possibility of ionizing atoms of the residual gas in the volume of the tube cavities. The practical application of the proposed design in measurements of the current density over the cross section of the off-electrode gas-discharge stream showed that the density-distribution uniformity of negatively charged plasma particles was at least 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anufriev, L.P., Bordusov, S.V., Gurskii, L.I., Dostanko, A.P., Kerentsev, A.F., Koval’chuk, N.S., Korobko, A.O., Lanin, V.L., Osipov, A.A., Portnov, L.Ya., Rubtsevich, I.I., Solov’ev, Ya.A., Solodukha, V.A., and Stanovskii, V.V., Tekhnologiya integral’noi elektroniki: Uchebnoe posobie (Technology of Integrated Electronics: A Tutorial), Minsk: Integralpoligraf, 2009. www.bsuir.by/m/12_100229_1_75815.pdf

    Google Scholar 

  2. Berlin, E.V. and Seidman, L.A., Ionno-plazmennye protsessy v tonkoplenochnoi tekhnologii (Ion–Plasma Processes in the Thin Film Technology), Moscow: Tekhnosfera, 2010.

    Google Scholar 

  3. Rykalin, N.N., Zuev, I.V., and Uglov, A.A., Osnovy elektronno-luchevoi obrabotki materialov (Foundations of Electron-Beam Processing of Materials), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  4. Bobrovnik, S.I., Kazantsev, V.V., Slutskii, I.G., and Solov’ev, V.A., RF Patent 1807776, Byull. Izobret., 1996, no. 10.

  5. Molokovskii, S.I. and Sushkov, A.D., Intensivnye elektronnye i ionnye puchki (Intense Electron and Ion Beams), Moscow: Energoizdat, 1991.

    Google Scholar 

  6. Tutyk, V.A. and Saf’yan, P.P., Instrum. Exp. Tech., 2009, vol. 52, pp. 842–846.

    Article  Google Scholar 

  7. Kazanskii, N.L. and Kolpakov, V.A., Formirovanie opticheskogo mikrorel’efa vo vneelektrodnoi plazme vysokovol’tnogo gazovogo razryada (Optical Microrelief Formation in Off-Electrode Plasma of High-Voltage Gas Discharge), Moscow: Radio i Svyaz’, 2009.

    Google Scholar 

  8. Kolpakov, V.A., Kolpakov, A.I., and Krichevskii, S.V., Instrum. Exp. Tech., 2014, vol. 57, pp. 147–154. DOI: 10.7868/S0032816214020189

    Article  Google Scholar 

  9. Brown, I.G., Keller, R., Holmes, A.J.T., Aitken, D., Gavin, B.F., Anderson, R.J., Gerber, R.A., Bell, A.E., Hughes, R.H., Burkhart, C., Humphries, Jr., S., Donets, E.D., Jongen, J., Ishikawa, J., and Lyneis, C.M., Physics and Technology of Ion Sources, Brown, I., Ed., Weinheim: Wiley, 2004, 2nd ed.; Moscow: Mir, 1998.

  10. Kolesov, S.N. and Kolesov, I.S., Materialovedenie i tekhnologiya konstruktsionnykh materialov: Uchebnik dlya vuzov (Material Science and Technology of Construction Materials: A Handbook for Higher School), Moscow: Vysshaya Shkola, 2007.

    Google Scholar 

  11. Grechishnikov, V.M., Metrologiya i radioizmereniya: Uchebnoe posobie (Metrology and Radio Measurements: A Tutorial), Samara: Samar. Gos. Aerokosm. Univ., 2007.

    Google Scholar 

  12. Chernetskii, A.V., Vvedenie v fiziku plazmy (Introduction into Plasma Physics), Moscow: Atomizdat, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolpakov.

Additional information

Original Russian Text © V.A. Kolpakov, S.V. Krichevskiy, M.A. Markushin, 2015, published in Pribory i Tekhnika Eksperimenta, 2015, No. 5, pp. 75–79.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolpakov, V.A., Krichevskiy, S.V. & Markushin, M.A. A device for monitoring the distribution of particles of off-electrode high-voltage gas-discharge plasma over the stream cross section using the curved-cavity method. Instrum Exp Tech 58, 653–656 (2015). https://doi.org/10.1134/S002044121504020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044121504020X

Keywords

Navigation