Skip to main content
Log in

Equipment for deposition of thin metallic films bombarded by fast argon atoms

  • Laboratory Technique
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Deposition of thin metallic films on dielectric substrates using a source of metal atom flow combined with a flow fast argon atoms has been investigated and the investigation results are presented. The fast atoms are produced due to charge-exchange collisions in a vacuum chamber of argon ions, which are accelerated by potential difference between the hollow-cathode glow-discharge plasma and an emissive grid and enter the chamber through the grid. The metal atoms produced due to ion sputtering of a metallic foil placed on the inner surface of the hollow cathode enter the chamber through the same grid. Substrate pretreatment and pulse-periodic bombardment of the growing film by ∼1-keV argon atoms both ensure adhesion of copper to glass up to 2 × 107 Pa. The use of a hollow substrate holder, whose inner surface is also covered with the same foil, makes it possible to exclude losses of the depositing metal and allows recommendation of the equipment for beam-assisted deposition of precious metal films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Movchan, B.A. and Demchishin, A.V., Fiz. Met. Metalloved., 1969, vol. 28, p. 653.

    Google Scholar 

  2. Thornton, J.A., J. Vac. Sci. Technol., 1974, vol. 11, p. 666.

    Article  ADS  Google Scholar 

  3. Musil, J., Vacuum, 1998, vol. 50, p. 363.

    Article  ADS  Google Scholar 

  4. Wolf, G.K., Surf. Coat. Technol., 1990, vol. 43/44, p. 920.

    Article  Google Scholar 

  5. Wolf, G.K. and Ensinger, W., Nucl. Instrum. Methods Phys. Res. B, 1991, vol. 59/60, p. 173.

    Article  ADS  Google Scholar 

  6. Barth, M., Hoffmann, V., Wolf, G.K., and Ensinger, W., Nucl. Instrum. Methods Phys. Res. B, 1991, vol. 59/60, p. 254.

    Article  ADS  Google Scholar 

  7. Ruset, C. and Grigore, E., Surf. Coat. Technol., 2002, vol. 156, p. 159.

    Article  Google Scholar 

  8. Ruset, C., Grigore, E., Collins, G.A., Short, K.T., Rossi, F., Gibson, N., Dong, H., and Bell, T., Surf. Coat. Technol., 2003, vol. 174/175, p. 698.

    Article  Google Scholar 

  9. Grigore, E., Ruset, C., Short, K.T., Hoeft, D., Dong, H., Li, X.Y., and Bell, T., Surf. Coat. Technol., 2005, vol. 200, p. 744.

    Article  Google Scholar 

  10. Muenz, W.D., Schulze, D., and Hauzer, F.J.M., Surf. Coat. Technol., 1992, vol. 50, p. 169.

    Article  Google Scholar 

  11. Kaufman, H.R., Rev. Sci. Instrum., 1990, vol. 61, p. 230.

    Article  ADS  Google Scholar 

  12. Gavrilov, N.V., Mesyats, G.A., Radkovskii, G.V., and Bersenev, V.V., Surf. Coat. Technol., 1997, vol. 96, p. 81.

    Article  Google Scholar 

  13. Metel, A.S. and Grigoriev, S.N., US Patent No 6285025, Int. Cl. H01S 1/00; H01S 3/00, 2001.

  14. Grigoriev, S. and Metel, A., Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Boston: Academic, 2004, p. 147.

    Book  Google Scholar 

  15. Metel, A.S., Plasma Phys. Rep., 2012, vol. 38, p. 254.

    Article  ADS  Google Scholar 

  16. Grigoriev, S., Melnik, Yu., and Metel, A., Surf. Coat. Technol., 2002, vol. 156, p. 44.

    Article  Google Scholar 

  17. Grigoriev, S.N., Melnik, Yu.A., Metel, A.S., and Panin, V.V., Instrum. Exp. Tech., 2009, vol. 52, p. 602.

    Article  Google Scholar 

  18. Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., and Bolbukov, V.P., Instrum. Exp. Tech., 2012, vol. 55, p. 122.

    Article  Google Scholar 

  19. Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., and Bolbukov, V.P., Instrum. Exp. Tech., 2012, vol. 55, p. 288.

    Article  Google Scholar 

  20. Grigoriev, S.N., Melnik, Yu.A., and Metel, A.S., Instrum. Exp. Tech., 2013, vol. 56, p. 358.

    Article  Google Scholar 

  21. Metel, A., Bolbukov, V., Volosova, M., Grigoriev, S., and Melnik, Yu., Surf. Coat. Technol., 2013, vol. 225, p. 34.

    Article  Google Scholar 

  22. Metel, A.S., Sov. Phys. Tech. Phys., 1986, vol. 31, p. 1395.

    Google Scholar 

  23. Phelps, A.V., J. Phys. Chem. Ref. Data, 1991, vol. 20, p. 557.

    Article  ADS  Google Scholar 

  24. Metel, A.S., Melnik, Yu.A., and Panin, V.V., Plasma Phys. Rep., 2011, vol. 37, p. 357.

    Article  ADS  Google Scholar 

  25. Metel, A., Grigoriev, S., Melnik, Yu., Panin, V., and Prudnikov, V., Jpn. J. Appl. Phys., 2011, vol. 50, pp. 08JG04.

    Article  Google Scholar 

  26. Guseva, M.B., Babaev, V.G., Khvostov, V.V., and Savchenko, N.F., Nanotekhnol.: Razrab. Primen. — XXI Vek, 2010, vol. 2, p. 15.

    Google Scholar 

  27. Cakir, A.F., Metel, A., Urgen, M., and Grigoriev, S., Galvanotechnik, 2000, vol. 91, p. 768.

    Google Scholar 

  28. Rossnagel, S.M., IEEE Trans. Plasma Sci., 1990, vol. 18, p. 878.

    Article  ADS  Google Scholar 

  29. Glazunov, V.N. and Metel, A.S., Sov. Phys. Tech. Phys., 1981, vol. 26, p. 559.

    Google Scholar 

  30. Glazunov, V.N., Grechanyi, V.G., and Metel’, A.S., Sov. Phys. Tech. Phys., 1982, vol. 27, p. 1084.

    Google Scholar 

  31. Metel, A., Surf. Coat. Technol., 2002, vol. 156, p. 38.

    Article  Google Scholar 

  32. Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., and Panin, V.V., Plasma Phys. Rep., 2009, vol. 35, p. 1058.

    Article  ADS  Google Scholar 

  33. Grigoriev, S.N. and Metel, A.S., Modifikatsiya poverkhnosti tleyushchim razryadom s elektrostaticheskim uderzhaniem elektronov (Surface Modification with by Glow Discharge Electrostatic Confinement of Electrons), Moscow: Yanus-K, 2007.

    Google Scholar 

  34. Metel, A.S. and Nastyukha, A.I., Radiophys. Quantum Electronics, 1976, vol. 19, p. 1307.

    Article  ADS  Google Scholar 

  35. Metel, A.S., Sov. Phys. Tech. Phys., 1985, vol. 30, p. 1133.

    ADS  Google Scholar 

  36. Metel, A.S. and Nastyukha, A.I., Radiophys. Quantum Electronics, 1976, vol. 19, p. 765.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Metel.

Additional information

Original Russian Text © A. Metel, V. Bolbukov, M. Volosova, S. Grigoriev, Yu. Melnik, 2014, published in Pribory i Tekhnika Eksperimenta, 2014, No. 3, pp. 114–121.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metel, A., Bolbukov, V., Volosova, M. et al. Equipment for deposition of thin metallic films bombarded by fast argon atoms. Instrum Exp Tech 57, 345–351 (2014). https://doi.org/10.1134/S0020441214020110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441214020110

Keywords

Navigation