Skip to main content
Log in

Thermoelectric Properties of Ca0.5−xSr0.5LuxMnO3−δ Manganites

  • Published:
Inorganic Materials Aims and scope

Abstract

Using electrical conductivity (σ), Seebeck coefficient (S), thermal expansion, specific heat, and thermal diffusivity measurements in air in the temperature range 300–1200 K, we have determined the thermal conductivity (κ), thermoelectric power factor (S2σ), and thermoelectric figure of merit (ZT = S2σT/κ) of Ca0.5−xSr0.5LuxMnO3−δ (x = 0.05, 0.10, 0.15, 0.20) manganites. The Ca0.45Sr0.5Lu0.05MnO3−δ material has been shown to have the highest S2σ and ZT owing to its high S and low κ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Ni, C. and Irvine, J.T.S., Calcium manganite as oxygen electrode materials for reversible solid oxide fuel cell, Faraday Discuss., 2015, vol. 182, pp. 289–305. https://doi.org/10.1039/C5FD00026B

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Porras-Vazquez, J.M., Losilla, E.R., Keenan, P.J., Hancock, C.A., Kemp, T.F., Hanna, J.V., and Slater, P.R., Investigation into the effect of Si doping on the performance of Sr1−yCayMnO3−δ SOFC cathode materials, Dalton Trans., 2013, vol. 42, pp. 5421–5429. https://doi.org/10.1039/C3DT32561J

    Article  CAS  PubMed  Google Scholar 

  3. Da Silva, F.S. and de Souza, T.M., Novel materials for solid oxide fuel cell technologies: a literature review, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 26020–26036. https://doi.org/10.1016/j.ijhydene.2017.08.105

    Article  CAS  Google Scholar 

  4. Sun, C., Hui, R., and Roller, J., Cathode materials for solid oxide fuel cells: a review, J. Solid State Electrochem., 2010, vol. 14, pp. 1125–1144. https://doi.org/10.1007/s10008-009-0932-0

    Article  CAS  Google Scholar 

  5. Esaka, T., Morimoto, H., and Iwahara, H., Nonstoichiometry in perovskite-type oxide Cal−xCexMnO3−δ and its properties in alkaline solution, J. Appl. Electrochem., 1992, vol. 22, pp. 821–824. https://doi.org/10.1007/BF01023724

    Article  CAS  Google Scholar 

  6. Lucas, C., Eiroa, I., Nunes, M.R., Russo, P.A., Ribeiro Carrott, M.M.L., da Silva Pereira, M.I., and Melo Jorge, M.E., Preparation and characterization of Ca1−xCexMnO3 perovskite electrodes, J. Solid State Electrochem., 2009, vol. 13, pp. 943–950. https://doi.org/10.1007/s10008-008-0630-3

    Article  CAS  Google Scholar 

  7. Wang, Y., Sui, Y., Wang, X., and Su, W., Effects of substituting La3+, Y3+ and Ce4+ for Ca2+ on the high temperature transport and thermoelectric properties of CaMnO3, J. Phys. D: Appl. Phys., 2009, vol. 42, p. 055010. https://doi.org/10.1088/0022-3727/42/5/055010

    Article  ADS  CAS  Google Scholar 

  8. Bhaskar, A., Liu, C.-J., and Yuan, J.J., Thermoelectric and magnetic properties of Ca0.98RE0.02MnO3−δ (RE = Sm, Gd, and Dy), J. Electron. Mater., 2012, vol. 41, pp. 2338–2344. https://doi.org/10.1007/s11664-012-2159-6

    Article  ADS  CAS  Google Scholar 

  9. Löhnert, R. and Töpfer, J., Enhancing the thermoelectric properties of CaMnO3−δ via optimal substituent selection, J. Solid State Chem., 2022, vol. 315, p. 123437. https://doi.org/10.1016/j.jssc.2022.123437

    Article  CAS  Google Scholar 

  10. Madre, M.A., Amaveda, H., Dura, O.J., Pelloquin, D., Mora, M., Torres, M.A., Marinel, S., and Sotelo, A., Effect of Y, La, and Yb simultaneous doping on the thermal conductivity and thermoelectric performances of CaMnO3 ceramics, J. Alloys Compd., 2023, vol. 954, p. 170201. https://doi.org/10.1016/j.jallcom.2023.170201

    Article  CAS  Google Scholar 

  11. Ohtaki, M., Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source, J. Ceram. Soc. Jpn., 2011, vol. 119, pp. 770–775. https://doi.org/10.2109/jcersj2.119.770

    Article  CAS  Google Scholar 

  12. Okuda, T. and Fujii, Y., Cosubstitution effect on the magnetic, transport, and thermoelectric properties of the electron-doped perovskite manganite CaMnO3, J. Appl. Phys., 2010, vol. 108, p. 103702. https://doi.org/10.1063/1.3505756

    Article  ADS  CAS  Google Scholar 

  13. Chimaissem, O., Dabrowski, B., Kolesnik, S., Mais, J., Brown, D.E., Kruk, R., Prior, P., Pyles, B., and Jorgensen, J.D., Relationship between structural parameters and the Néel temperature in Sr1−xCaxMnO3 (0 ≤ x ≤ 1) and Sr1−yBayMnO3 (y ≤ 0.2), Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 64, p. 134412. https://doi.org/10.1103/PhysRevB.64.134412

    Article  ADS  CAS  Google Scholar 

  14. Kraus, W. and Nolze, G., PowderCell for Windows – Version 2.4 – Structure Visualisation/Manipulation, Powder Pattern Calculation and Profile Fitting, Berlin: Federal Inst. for Materials Research and Testing, 2000.

    Google Scholar 

  15. Cusack, N. and Kendall, P., The absolute scale of thermoelectric power at high temperature, Proc. Phys. Soc., 1958, vol. 72, pp. 898–901. https://doi.org/10.1088/0370-1328/72/5/429

    Article  ADS  Google Scholar 

  16. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767. https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  17. Bosman, I.G. and Daal, H.J., Small-polaron versus band conduction in some transition-metal oxides, Adv. Phys., 1970, vol. 19, pp. 1–117. https://doi.org/10.1080/00018737000101071

    Article  ADS  CAS  Google Scholar 

  18. Fedorova, O.M., Vedmid’, L.B., Balakireva, V.B., Vorotnikov, V.A., and Balakirev, V.F., Effect of barium concentration on the structural properties and electrical conductivity of Pr1–xBaxMnO3 (x = 0, 0.15, 0.25) solid solutions, Inorg. Mater., 2021, vol. 57, no. 4, pp. 392–398. https://doi.org/10.1134/S002016852104004X

    Article  CAS  Google Scholar 

  19. Hundley, M.F. and Neumeier, J.J., Thermoelectric power of La1−xCaxMnO3+δ: inadequacy of the nominal Mn3+/4+ valence approach, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, vol. 55, pp. 11511–11515. https://doi.org/10.1103/PhysRevB.55.11511

    Article  ADS  CAS  Google Scholar 

  20. Moskvin, A.S., Disproportionation and electronic phase separation in parent manganite LaMnO3, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 55, p. 115102. https://doi.org/10.1103/PhysRevB.79.115102

    Article  ADS  CAS  Google Scholar 

  21. Leonidov, I.A., Konstantinova, E.I., Patrakeev, M.V., Markov, A.A., and Kozhevnikov, V.L., Seebeck coefficient of Ca1−xPrxMnO3−δ paramagnetic manganites, Inorg. Mater., 2017, vol. 53, no. 6, pp. 583–588. https://doi.org/10.1134/S0020168517060097

    Article  CAS  Google Scholar 

  22. Austin, I.G. and Mott, N.F., Polarons in crystalline and non-crystalline materials, Adv. Phys., 2001, vol. 50, pp. 757–812. https://doi.org/10.1080/00018736900101267

    Article  ADS  Google Scholar 

  23. Konstantinova, E.I., Ryzhkov, M.A., Leonidova, O.N., Litvinov, V.A., and Leonidov, I.A., Influence of holmium doping and oxygen nonstoichiometry on the transport properties of perovskite-type Ca0.6−xSr0.4HoxMnO3−δ, J. Solid State Electrochem., 2023. https://doi.org/10.1007/s10008-023-05386-0

  24. Konstantinova, E.I., Leonidov, I.A., Markov, A.A., Samigullina, R.F., Chukin, A.V., and Leonidov, I.I., The impact of morphotropy and polymorphism on electric properties of manganites: the case of Sr0.5Ca0.5Mn1−xVxO3, J. Mater. Chem. A, 2020, vol. 8, pp. 16497–16505. https://doi.org/10.1039/d0ta03731a

    Article  CAS  Google Scholar 

  25. Konstantinova, E.I., Leonidova, O.N., Chukin, A.V., and Leonidov, I.A., Thermal expansion and phase transitions in Sr0.5Ca0.5Mn1−xVxO3 perovskites, Mater. Lett., 2021, vol. 283, p. 128803. https://doi.org/10.1016/j.matlet.2020.128803

    Article  CAS  Google Scholar 

  26. Thiel, P., Populoh, S., Yoon, S., Saucke, G., Rubenis, K., and Weidenkaff, A., Charge-carrier hopping in highly conductive CaMn1−xMxO3−δ thermoelectrics, J. Phys. Chem. C, 2015, vol. 119, pp. 21860–21867. https://doi.org/10.1021/acs.jpcc.5b05882

    Article  CAS  Google Scholar 

  27. Thiel, P., Eilertsen, J., Populoh, S., Saucke, G., Döbeli, M., Shkabko, A., Sagarna, L., Karvonen, L., and Weidenkaff, A., Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3−δ, J. Appl. Phys., 2013, vol. 114, p. 243707. https://doi.org/10.1063/1.4854475

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-13-00343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Leonidov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, E.I., Litvinov, V.A., Ryzhkov, M.A. et al. Thermoelectric Properties of Ca0.5−xSr0.5LuxMnO3−δ Manganites. Inorg Mater 59, 1319–1325 (2023). https://doi.org/10.1134/S0020168523120051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523120051

Keywords:

Navigation