Skip to main content
Log in

Thermoelectric and Magnetic Properties of Ca0.98RE0.02MnO3−δ (RE = Sm, Gd, and Dy)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

An Erratum to this article was published on 08 December 2012

Polycrystalline samples of Ca0.98RE0.02MnO3−δ (RE = Sm, Gd, and Dy) have been prepared by conventional solid-state reactions and their properties measured at 300 K to 700 K. All samples were single phase with orthorhombic structure. The average valence and oxygen content of Ca0.98RE0.02MnO3−δ were determined by iodometric titration. Doping at the Ca site by rare-earth metals causes a strong decrease of electrical resistivity due to the creation of charge carrier content by Mn3+ in the Mn4+ matrix, as evidenced by iodometric titration results. The Seebeck coefficient of all the samples was negative, indicating that the predominant carriers are electrons over the entire temperature range. Among the doped samples, Ca0.98Dy0.02MnO3−δ had the highest dimensionless figure of merit of 0.073 at 612 K, representing an improvement of about 115% with respect to the undoped CaMnO3−δ sample at the same temperature. All the samples exhibited an antiferromagnetic transition with Néel temperature of around 120 K. Magnetization measurements indicated that Ca0.98RE0.02 MnO3−δ samples exhibited a high-spin state of Mn3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Mahan, Solid State Phys. 51, 81 (1998).

    Article  CAS  Google Scholar 

  2. T.M. Tritt, Science 283, 804 (1999).

    Article  CAS  Google Scholar 

  3. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  4. D.-Y. Chung, T. Hogan, P. Brazis, M.R. Lane, C. Kamewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, Science 287, 1024 (2000).

    Article  CAS  Google Scholar 

  5. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  CAS  Google Scholar 

  6. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  CAS  Google Scholar 

  7. C.-J. Liu, L.-C. Huang, and J.-S. Wang, Appl. Phys. Lett. 89, 204102 (2006).

    Article  Google Scholar 

  8. R. Funahashi and I. Matsubara, Appl. Phys. Lett. 79, 362 (2001).

    Article  CAS  Google Scholar 

  9. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai, J. Solid State Chem. 120, 105 (1995).

    Article  CAS  Google Scholar 

  10. R. Funahashi, A. Kosuga, N. Miyasou, E. Takeuchi, S. Urata, K. Lee, H. Ohta, and K. Koumoto, Proceeding of the 26th International Conference on Thermoelectrics (ICT-2007), South Korea, pp. 124–128.

  11. B.T. Cong, T. Tsuji, P.X. Thao, P.Q. Thanh, and Y. Yamamura, Phys. B 352, 18 (2004).

    Article  CAS  Google Scholar 

  12. G. Xu, R. Funahashi, I. Matsubara, M. Shiano, and Y. Zhou, J. Mater. Res. 17, 1092 (2002).

    Article  CAS  Google Scholar 

  13. M. Miclau, S. Herbert, R. Retoux, and C. Martin, J. Solid State Chem. 178, 1104 (2005).

    Article  CAS  Google Scholar 

  14. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys. 100, 084911 (2006).

    Article  Google Scholar 

  15. Y. Wang, Y. Sui, and W. Su, J. Appl. Phys. 104, 093703 (2008).

    Article  Google Scholar 

  16. S.-M. Choi, C.-H. Lim, and W.-S. Seo, J. Electron. Mater. 40, 551 (2011).

    Article  CAS  Google Scholar 

  17. S. Lemonnier, E. Guilmeau, C. Goupil, R. Funahashi, and J.G. Noudem, Ceram. Int. 36, 887 (2010).

    Article  CAS  Google Scholar 

  18. Y. Wang, Y. Sui, H. Fan, X. Wang, Y. Su, W. Su, and X. Liu, Chem. Mater. 21, 4653 (2009).

    Article  CAS  Google Scholar 

  19. C.-J. Liu, Philos. Mag. B 79, 1145 (1999).

    Article  CAS  Google Scholar 

  20. C.-J. Liu, M.D. Mays, D.O. Cowan, and M.G. Sánchez, Chem. Mater. 3, 495 (1991).

    Article  CAS  Google Scholar 

  21. K.R. Poeppelmeier, M.E. Leonowicz, J.C. Scanlon, J.M. Longo, and W.B. Yelon, J. Solid State Chem. 45, 71 (1982).

    Article  CAS  Google Scholar 

  22. Z. Zeng, M. Greeblatt, and M. Croft, Phys. Rev. B 59, 8784 (1999).

    Article  CAS  Google Scholar 

  23. H. Taguchi and M. Shimada, J. Solid State Chem. 63, 290 (1986).

    Article  CAS  Google Scholar 

  24. H. Taguchi, M. Nagao, and M. Shimada, J. Solid State Chem. 82, 8 (1989).

    Article  CAS  Google Scholar 

  25. C.-J. Liu, A. Bhaskar, and J.J. Yuan, Appl. Phys. Lett. 98, 214101 (2011).

    Article  Google Scholar 

  26. H. Muguerra, B.R. Murias, M. Traianidis, C. Marchal, P. Vanderbemden, B. Vertruyen, C. Henrist, and R. Cloots, J. Alloys Compd. 509, 7710 (2011).

    Article  CAS  Google Scholar 

  27. K. Park and G.W. Lee, Nanoscale Res. Lett. 6, 548 (2011).

    Article  Google Scholar 

  28. Y. Wang, Y. Sui, X. Wang, and W. Su, J. Phys. D Appl. Phys. 42, 055010 (2009).

    Article  Google Scholar 

  29. A. Kosuga, Y. Isse, Y. Wang, K. Koumoto, and R. Funahashi, J. Appl. Phys. 105, 093717 (2009).

    Article  Google Scholar 

  30. A. Maignan, C. Martin, F. Damay, B. Raveau, and J. Hejtmanek, Phys. Rev. B 58, 2758 (1998).

    Article  CAS  Google Scholar 

  31. J. Hejtmanek, Z. Jirak, M. Marysko, C. Martin, A. Maignan, M. Hervieu, and B. Raveau, Phys. Rev. B 60, 14057 (1999).

    Article  CAS  Google Scholar 

  32. Y. Moritomo, A. Machida, E. Nishibori, M. Takata, and M. Sakata, Phys. Rev. B 64, 214409 (2001).

    Article  Google Scholar 

  33. I.D. Fawcett, J.E. Sunstrom IV, M. Greenblatt, M. Croft, and K.V. Ramanujachary, Chem. Mater. 10, 3643 (1998).

    Article  CAS  Google Scholar 

  34. C.R. Wiebe, J.E. Greedan, J.S. Garden, Z. Zeng, and M. Greenblatt, Phys. Rev. B 64, 064421 (2001).

    Article  Google Scholar 

  35. K. Nakade, K. Hirota, M. Kato, and H. Taguchi, Mater. Res. Bull. 42, 1069 (2007).

    Article  CAS  Google Scholar 

  36. Y. Wang, Y. Sui, J. Cheng, X. Wang, Z. Lu, and W. Su, J. Phys. Chem. C 113, 12509 (2009).

    Article  CAS  Google Scholar 

  37. J.B. Goodenough, J. Appl. Phys. 37, 1415 (1966).

    Article  CAS  Google Scholar 

  38. J.L. Chen, Y.S. Liu, C.-J. Liu, L.-C. Huang, C.L. Dong, S.S. Chen, and C.L. Chang, J. Phys. D Appl. Phys. 42, 135418 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Jyi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaskar, A., Liu, CJ. & Yuan, J. Thermoelectric and Magnetic Properties of Ca0.98RE0.02MnO3−δ (RE = Sm, Gd, and Dy). J. Electron. Mater. 41, 2338–2344 (2012). https://doi.org/10.1007/s11664-012-2159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2159-6

Keywords

Navigation