Skip to main content
Log in

High-Temperature Synthesis of Mo3Al2C-Based Materials via Combustion of MoO3 + Al + C + Al2O3 Powder Mixtures

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper reports results on self-propagating high-temperature synthesis of cast materials in the Mo–Al–C system. Experiments were carried out in a 3-L reactor at an argon pressure p = 5 MPa. The starting mixture consisted of molybdenum(VI) oxide, aluminum (ASD-1), carbon (graphite), and aluminum oxide (alundum) powders. It has been demonstrated that, varying the percentages of the components in the starting mixture, one can influence synthesis parameters and the phase composition and microstructure of the final products. At the stoichiometric composition of the starting mixture calculated for the Mo3Al2C phase, not only the required phase but also molybdenum aluminides and carbides were obtained in experiments. Combustion of the starting mixture was accompanied by scatter of the reactants and final products from the crucible. Dilution of the starting mixture with Al2O3 inert additions has been shown to increase the percentage of the required phase Mo3Al2C in the synthesis products. The largest percentage of Mo3Al2C in the ingot was reached at 20% Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wang, X.H., Hao, H.L., Zhang, M.H., Li, W., and Tao, K.Y., Synthesis and characterization of molybdenum carbides using propane as carbon source, J. Solid State Chem., 2006, vol. 179, pp. 538–543.

    Article  CAS  Google Scholar 

  2. Manoli, J.M., Da Costa, P., Brun, M., Vrinat, M., Mauge, F., and Potvin, C., Hydrodesulfurization of 4,6-dimethyldibenzothiophene over promoted (Ni, P) alumina-supported molybdenum carbide catalysts: activity and characterization of active sites, J. Catal., 2004, vol. 221, pp. 365–377. https://doi.org/10.1016/j.jcat.2003.08.011

    Article  CAS  Google Scholar 

  3. Zeng, L., Zhang, L., Li, W., Zhao, S., Lei, J., and Zhou, Z., Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae, Biosens. Bioelectron., 2010, vol. 25, pp. 2696–2700. https://doi.org/10.1016/j.bios.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  4. Cho, S.J., Lee, J., Lee, Y.S., and Kim, D.P., Characterization of iridium catalyst for decomposition of hydrazine hydrate for hydrogen generation, Catal. Lett., 2006, vol. 109, pp. 181–186. https://doi.org/10.1007/s10562-006-0081-3

    Article  CAS  Google Scholar 

  5. Nguyen, T.H., Nguyen, T.V., Lee, Y.J., Safinski, T., and Adesina, A.A., Structural evolution of alumina supported Mo–W carbide nanoparticles synthesized by precipitation from homogeneous solution, Mater. Res. Bull., 2005, vol. 40, pp. 149–157. https://doi.org/10.1016/j.materresbull.2004.09.007

    Article  CAS  Google Scholar 

  6. Zhu, Q., Chen, Q., Yang, X., and Ke, D., A new method for the synthesis of molybdenum carbide, Mater. Lett., 2007, vol. 61, pp. 5173–5174. https://doi.org/10.1016/j.matlet.2007.04.056

    Article  CAS  Google Scholar 

  7. Karki, A.B., Xiong, Y.M., Vekhter, I., Browne, D., Adams, P.W., Thomas, K.R., Chan, J.Y., Prozorov, R., Kim, H., and Young, D.P., Structure and physical properties of the noncentrosymmetric superconductor Mo3Al2C, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, p. 064512. https://doi.org/10.1103/PhysRevB.82.064512

    Article  CAS  Google Scholar 

  8. Bonalde, I., Kim, H., Prozorov, R., Rojas, C., Rogl, P., and Bauer, E., Evidence for conventional superconducting behavior in noncentrosymmetric Mo3Al2C, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 84, p. 134506. https://doi.org/10.1103/PhysRevB.84.134506

    Article  CAS  Google Scholar 

  9. Sekine1, C., Sai1, U., Hayashi1, J., Kawamura1, Y., and Bauer, E., High-pressure synthesis and bulk modulus of non-centrosymmetric superconductor Mo3Al2C, J. Phys.: Conf. Ser., 2017, vol. 950, p. 042028. https://doi.org/10.1088/1742-6596/950/4/042028

  10. Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, no. 12, pp. 1779–1786. https://doi.org/10.1039/B401358C

    Article  CAS  Google Scholar 

  11. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2016, vol. 62, no. 4, pp. 203–239. https://doi.org/10.1080/09506608.2016.1243291

    Article  CAS  Google Scholar 

  12. Gorshkov, V.A., Miloserdov, P.A., Luginina, M.A., Sachkova, N.V., and Belikova, A.F., High-temperature synthesis of a cast material with a maximum content of the MAX phase Cr2AlC, Inorg. Mater., 2017, vol. 53, no. 3, pp. 271–277. https://doi.org/10.1134/S0020168517030062

    Article  CAS  Google Scholar 

  13. Gorshkov, V.A., Miloserdov, P.A., Sachkova, N.V., Luginina, M.A., and Yukhvid, V.I., SHS metallurgy of Cr2AlC MAX phase-based cast materials, Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 5, pp. 570–575. https://doi.org/10.3103/S106782121805005X

    Article  Google Scholar 

  14. Gorshkov, V.A., Miloserdov, P.A., Khomenko, N.Yu., and Sachkova, N.V., Production of cast materials based on the Cr2AlC MAX phase by SHS metallurgy using coupled chemical reactions, Russ. J. Non-Ferrous Met., 2020, vol. 61, no. 3, pp. 362–367. https://doi.org/10.3103/S1067821220030086

    Article  Google Scholar 

  15. Miloserdov, P.A., Gorshkov, V.A., Kovalev, I.D., and Kovalev, D.Yu., High-temperature synthesis of cast materials based on Nb2AlC MAX phase, Ceram. Int., 2019, vol. 45, no. 2, pp. 2689–2691. https://doi.org/10.1016/j.ceramint.2018.10.198

    Article  CAS  Google Scholar 

  16. Kovalev, I.D., Miloserdov, P.A., Gorshkov, V.A., and Kovalev, D.Yu., Synthesis of Nb2AlC MAX phase by SHS metallurgy, Russ. J. Non-Ferrous Met., 2020, vol. 61, no. 1, pp. 126–131. https://doi.org/10.3103/S1067821220010083

    Article  Google Scholar 

  17. Gorshkov, V.A., Karpov, A.V., Kovalev, D.Yu., and Sychev, A.E., Synthesis, structure and properties of material based on V2AlC MAX phase, Phys. Met. Metallogr., 2020, vol. 121, no. 8, pp. 765–771 https://doi.org/10.1134/s0031918x20080037

    Article  CAS  Google Scholar 

  18. Petricek, V., Dusek, M., and Palatinus, L., Crystallographic computing system JANA2006: general features, Z. Kristallogr., 2014, vol. 229, no. 5, pp. 345–352. https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  19. Crystallography Open Database. http://www.crystallography.net/cod.

  20. Jain, A., Ong, S.P., Hautier, G., et al., The materials project: a materials genome approach to accelerating materials innovation, APL Mater., 2013, vol. 1, p. 011002. https://materialsproject.org.

    Article  Google Scholar 

  21. Yukhvid, V.I., Borovinskaya, I.P., and Merzhanov, A.G., Effect of pressure on the combustion behavior of fusible heterogeneous systems, Fiz. Goreniya Vzryva, 1983, no. 3, pp. 30–32.

  22. Schuster, J.C. and MSIT, Al–Mo binary phase diagram evaluation, Springer Materials, Effenberg, G., Ed., Heidelberg: Springer, 2005, rep. ID 20.12123.1.3. https://materials.springer.com/msi/docs/sm_msi_r_ 20_012123_01.

  23. Velikanova, T.Ya. and MSIT, in Springer Materials, Effenberg, G., Ed., Heidelberg: Springer, 1990, rep. ID 190.22242.1.6. https://materials.springer.com/msi/docs/sm_msi_r_10_022242_01.

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Distributed Shared Research Facilities Center, Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education through the state research target no. FFSZ-20022-0009 for the Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, state registration no. 1021071612847-0-1.4.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, D.Y., Gorshkov, V.A. & Boyarchenko, O.D. High-Temperature Synthesis of Mo3Al2C-Based Materials via Combustion of MoO3 + Al + C + Al2O3 Powder Mixtures. Inorg Mater 58, 939–947 (2022). https://doi.org/10.1134/S0020168522090084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522090084

Keywords:

Navigation