Skip to main content
Log in

Study of the Reaction Products of TaCl5 with Acetylene in Benzene–a Catalyst for Alkyne Cyclotrimerization

  • Published:
Inorganic Materials Aims and scope

Abstract—

Products of reaction between TaCl5 and C2H2 in benzene, with the composition TaCl3.7C15H22—heterogeneous catalysts for cyclotrimerization of alkynes—have been studied using scanning electron microscopy, IR spectroscopy, and X-ray photoelectron spectroscopy (XPS). The catalysts consist of spherical particles with an average diameter of 70 nm. According to the XPS results, the elemental composition of their surface is TaCl1.80C28O3. The tantalum 4f7/2 and 5p3/2 binding energies (Eb) obtained, 26.3 and 37.2 eV, indicate that the oxidation state of tantalum on the surface of the material is 5+. After Ar+ ion etching, we observe, in addition to Ta5+, 4f7/2 and 5p3/2 lines at Eb = 23.8 and 34.6 eV, respectively, which demonstrates that the oxidation state of tantalum in the active catalyst is 3+. The Cl 2p line has the form of two overlapping doublets with binding energies of 198.7 and 200.1 eV, due to the presence of bridging and terminal chlorine atoms in the catalytically active complex. The binding energy Eb(C 1s) = 284.2 eV corresponds to cyclic unsaturated hydrocarbons with conjugated bonds of the hydrocarbon matrix. The catalyst is stable in high vacuum and undergoes no charging when exposed to an X-ray beam, which suggests that it has weak dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Hartung, J.B., Jr. and Pederson, S.F., Synthesis and characterization of trihaloniobium alkyne complexes, Organometallics, 1990, vol. 9, no. 5, pp. 1414–1417. https://doi.org/10.1021/om00119a010

    Article  CAS  Google Scholar 

  2. Oshiki, T. and Takai, K., Jpn. Kokai Tokkyo Koh, 2002, paper 2002-60354.

  3. Cotton, F.A. and Hall, W.T., Reactions of niobium(III) and tantalum(III) compounds with acetylenes: 4. Polymerization of internal acetylenes, Macromolecules, 1981, vol. 14, no. 2, pp. 233–236. https://doi.org/10.1021/ma50003a001

    Article  CAS  Google Scholar 

  4. Kakeya, M., Fujihara, T., Kasaya, T., and Nagasawa, A., Dinuclear niobium(III) complexes [{NbCl2(L)}2(μ-Cl)2(μ-L)] (L = tetrahydrothiophene, dimethyl sulfide): preparation, molecular structures, and the catalytic activity for the regioselective cyclotrimerization of alkynes, Organometallics, 2006, vol. 25, pp. 4134–4136. https://doi.org/10.1021/om0601100

    Article  CAS  Google Scholar 

  5. Lachmann, G., Plessis, J.A.K., and Toit, C.J., The role of niobium(V) chloride in the catalytic cyclotrimerization of phenylacetylene, J. Mol. Catal., 1987, vol. 42, pp. 151–159. https://doi.org/10.1016/0304-5102(87)85021-6

    Article  CAS  Google Scholar 

  6. Dandliker, G., Katalytische Cyclisierung von Acetylen und substituiertem Acetylen zu aromatischen Kohlenwasserstoffen, Helv. Chim. Acta, 1969, vol. 52, no. 6, pp. 1482–1487. https://doi.org/10.1002/hlca.19690520608

    Article  Google Scholar 

  7. Il’in, E.G., Parshakov, A.S., Teterin, A.Yu., Maslakov, K.I., and Teterin, Yu.A., X-ray photoelectron spectroscopic characterization of the acetylene cyclotrimerization catalyst NbCl2(CnHn) (n = 10–12), Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, pp. 1788–1793. https://doi.org/10.1134/S0036023611110106

    Article  CAS  Google Scholar 

  8. Il’in, E.G., Parshakov, A.S., Buryak, A.K., Kochubei, D.I., Drobot, D.V., and Nefedov, V.I., Nanosized clusters of molybdenum chlorides—active sites in catalytic acetylene oligomerization, Dokl. Phys. Chem., 2009, vol. 427, pp. 150–154. https://doi.org/10.1134/S0012501609080053

    Article  CAS  Google Scholar 

  9. Il’in, E.G., Yarzhemskii, V.G., Parshakov, A.S., and Buryak, A.K., Niobium oxochlorides in the gas phase: quantum chemical calculations of the structure and relative stability of isomers, Russ. J. Inorg. Chem., 2013, vol. 58, no. 1, pp. 41–48. https://doi.org/10.1134/S0036023613010087

    Article  CAS  Google Scholar 

  10. Il’in, E.G., Parshakov, A.S., and Buryak, A.K., Laser desorption–ionization mass spectrometry of tantalum oxochloride anion clusters, Int. Mass Spectrom., 2020, vol. 458, paper 116448. https://doi.org/10.1016/j.ijms.2020.116448

  11. Shirley, D.A., High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B: Condens. Matter Mater. Phys., 1972, vol. 5, no. 12, pp. 4709–4714. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  12. Nemoshkalenko, V.V. and Aleshin, A.G., Elektronnaya spektroskopiya kristallov (Electron Spectroscopy of Crystals), Kiev: Naukova Dumka, 1976.

  13. Ferrari, A.C., Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Commun., 2007, vol. 143, pp. 47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  14. Nefedov, V.N., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii (X-ray Photoelectron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

  15. Teterin, Yu.A. and Gagarin, S.G., Inner valence molecular orbitals of compounds and the structure of X‑ray photoelectron spectra, Russ. Chem. Rev., 1996, vol. 65, no. 10, pp. 825–847. https://doi.org/10.1070/rc1996v065n10abeh000

    Article  Google Scholar 

  16. Teterin, Yu.A. and Baev, A.S., Rentgenovskaya fotoelektronnaya spektroskopiya soedinenii lantanoidov (X-ray Photoelectron Spectroscopy of Lanthanide Compounds), Moscow: TsNIIAtominform, 1987.

  17. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, Gaithersburg: National Inst. of Standards and Technology, 2000, MD.20899. https://doi.org/10.18434/T4T88K

  18. Scofield, J.H., Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, no. 2, pp. 129–137. https://doi.org/10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  19. Yarzhemsky, V.G., Teterin, Y.A., Presnyakov, I.A., Maslakov, K.I., Teterin, A.Y., and Ivanov, K.E., Many-electron effects in Co 3s X-ray photoelectron spectra of diamagnetic ScCoO3 and Paramagnetic BiCoO3 cobaltites, JETP Lett., 2020, vol. 111, no. 8, pp. 422–427. https://doi.org/10.1134/S0021364020080135

    Article  CAS  Google Scholar 

  20. Yarzhemsky, V.G., Teterin, Yu.A., Maslakov, K.I., Teterin, A.Yu., and Ivanov, K.E., Many-electron effects in Th 5p and 5s X-ray photoelectron spectra of ThO2, JETP Lett., 2021, vol. 114, no. 10, pp. 609–615. https://doi.org/10.1134/S0021364021220136

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported through the state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, project no. 01201353365.

We acknowledge the support from the Russian Federation Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Il’in.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, E.G., Parshakov, A.S., Teterin, A.Y. et al. Study of the Reaction Products of TaCl5 with Acetylene in Benzene–a Catalyst for Alkyne Cyclotrimerization. Inorg Mater 58, 845–853 (2022). https://doi.org/10.1134/S0020168522070093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522070093

Keywords:

Navigation