Skip to main content
Log in

Preparation of High-Purity Tin Dichloride

  • Published:
Inorganic Materials Aims and scope

Abstract—

Extrapure-grade (99.9985 wt % pure) SnCl2 has been prepared from commercially pure metallic tin and hydrogen chloride gas. Purifying the synthesized tin(II) chloride in a fractional distillation column under normal conditions, we obtained extrapure-grade SnCl2 containing under 1 ppm impurities. The samples thus prepared were characterized by inductively coupled plasma mass spectrometry, IR and Raman spectroscopies, and X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Cabral, R.E., Leitao, A.C., Lage, C., Caldeira-de-Araujo, A., Bernardo-Filho, M., Dantas, F.J., and Cabral-Neto, J.B., Mutational potentiality of stannous chloride: an important reducing agent in the Tc-99m-radiopharmaceuticals, Mutat. Res., DNA Repair, 1998, vol. 408, no. 2, pp. 129–135.https://doi.org/10.1016/S0921-8777(98)00026-3

    Article  CAS  Google Scholar 

  2. Mukherjee Singh, O. and Ronibala Devi, L., Stannous chloride as a versatile catalyst in organic synthesis, Mini-Rev. Organ. Chem., 2013, vol. 10, no. 1, pp. 84–96.https://doi.org/10.2174/1570193X11310010007

    Article  Google Scholar 

  3. Yadav, J.B., Patil, R.B., Puri, R.K., and Puri, V., Studies on undoped SnO2 thin film deposited by chemical reactive evaporation method, Mater. Sci. Eng., B., 2007, vol. 139, no. 1, pp. 69–73.https://doi.org/10.1016/j.mseb.2007.01.032

    Article  CAS  Google Scholar 

  4. Widyasari, E.M., Simarmata, M.Y.A., Marzuki, M., Sriyani, M.E., Sugiharti, R.J., and Nuraeni, W., Preparation of 99mTc-quercetin as cancer radiotracer in drug discovery, Rasayan J. Chem., 219, vol. 12, no. 1, pp. 278–283.https://doi.org/10.31788/RJC.2019.1215052

  5. Zerong Wang, Comprehensive Organic Name Reactions and Reagents, New York: Wiley, 2010.https://doi.org/10.1002/9780470638859

  6. Chen, Z. et al., Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency, ACS Energy Lett., 2019, vol. 4, no. 6, pp. 1258–1259.https://doi.org/10.1021/acsenergylett.9b00847

    Article  CAS  Google Scholar 

  7. Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 2009, vol. 131, no. 17, pp. 6050–6051.https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  8. Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., and Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, J. Am. Chem. Soc., 2012, vol. 134, pp. 17396–17399.https://doi.org/10.1021/ja307789s

    Article  CAS  PubMed  Google Scholar 

  9. Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., and Moehl, T., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2012, vol. 2, no. 1, pp. 1–7.https://doi.org/10.1038/srep00591

    Article  CAS  Google Scholar 

  10. Babayigit, A., Ethirajan, A., Muller, M., and Conings, B., Toxicity of organometal halide perovskite solar cells, Nat. Mater., 2016, vol. 15, no. 3, pp. 247–251.https://doi.org/10.1038/nmat4572

    Article  CAS  PubMed  Google Scholar 

  11. Coletti, G., Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities, Prog. Photovoltaics, 2013, vol. 21, no. 5, pp. 1163–1170.https://doi.org/10.1002/pip.2195

    Article  CAS  Google Scholar 

  12. Hofstetter, J., Lelièvre, J.F., Del Cañizo, C., and Luque, A.D., Acceptable contamination levels in solar grade silicon: from feedstock to solar cell, Mater. Sci. Eng., B, 2009, vol. 159, pp. 299–304.https://doi.org/10.1016/j.mseb.2008.05.021

    Article  CAS  Google Scholar 

  13. Coletti, G., Bronsveld, P.C., Hahn, G., Warta, W., Macdonald, D., Ceccaroli, B., Wambach, K., Quang, N.L., and Fernandez, J.M., Impact of metal contamination in silicon solar cells, Adv. Funct. Mater., 2011, vol. 21, no. 5, pp. 879–890.https://doi.org/10.1002/adfm.201000849

    Article  CAS  Google Scholar 

  14. Handbuch der präparativen anorganischen Chemie in drei Bänden, von Brauer, G., Ed., Stuttgart: Ferdinand Enke, 1978, 3rd ed., Bd. 3.

  15. Jolly, W.L., The Synthesis and Characterization of Inorganic Compounds, Englewood Cliffs: Prentice-Hall, 1970.

    Google Scholar 

  16. Karyakin, Yu.V. and Angelov, I.I., Chistye khimicheskie veshchestva (Pure Chemical Substances), Moscow: Khimiya, 1974, vol. 408, p. 299.

    Google Scholar 

  17. Lide, D.R., CRC Handbook of Chemistry and Physics, Boca Raton: CRC, 1992, 72nd ed.

    Google Scholar 

  18. Devyatykh, G.G. and Elliev, Yu.E., Vvedenie v teoriyu glubokoi ochistki veshchestv (Theoretical Principles of Ultrapurification), Moscow: Nauka, 1981.

  19. Brekhovskikh, M.N., Mastryukov, M.V., Kornev, P.V., Gasanov, A.A., Kovalenko, A.E., and Fedorov, V.A., Synthesis and ultrapurification of tin diiodide, Inorg. Mater., 2019, vol. 55, no. 9, pp. 974–978.https://doi.org/10.1134/S0020168519090012

    Article  CAS  Google Scholar 

  20. Mastryukov, M.V., Demina, L.I., Moiseeva, L.V., Soldatkina, A.D., and Brekhovskikh, M.N., Synthesis and deep purification of tin tetrachloride, Russ. J. Inorg. Chem., 2021, vol. 66, no. 7, pp. 963–968.https://doi.org/10.1134/S003602362107007X

    Article  CAS  Google Scholar 

  21. Pirnat, J. and Trontelj, Z., Two-dimensional protonic conductor SnCl2 · 1.5H2O—comparison with SnCl2· 2H2O, Solid State Ionics, 1999, vol. 125, nos. 1–4, pp. 135–140.https://doi.org/10.1016/S0167-2738(99)00167-8

    Article  CAS  Google Scholar 

  22. Pirnat, J., Lužnik, J., Jagličić, Z., and Trontelj, Z., Dehydration of solid SnCl2 (OH2) · H2O to SnCl2, Z. Naturforsch., A: Phys. Sci., 1994, vol. 49, nos. 1–2, pp. 367–372.https://doi.org/10.1515/zna-1994-1-254

    Article  CAS  Google Scholar 

  23. Pirnat, J., Lužnik, J., Trontelj, Z., and Kaučič, V., Chlorine NQR of single crystals SnCl2xH2O (x = 1.5, 2): the evidence for the existence of hydrate with x = 1.5, J. Chem. Phys., 1982, vol. 76, no. 5, pp. 2585–2590.https://doi.org/10.1063/1.443236

    Article  CAS  Google Scholar 

  24. Trujillo, S.A., Peña-Solórzano, D., Bejarano, O.R., and Ochoa-Puentes, C., Tin (II) chloride dihydrate/choline chloride deep eutectic solvent: redox properties in the fast synthesis of N-arylacetamides and indolo (pyrrolo)[1, 2-a] quinoxalines, RSC Adv., 2020, vol. 10, no. 66, pp. 40552–40561.https://doi.org/10.1039/D0RA06871C

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, and the Prokhorov General Physics Institute, Russian Academy of Sciences.

The IR and Raman spectra were measured using equipment at the Shared Physical Characterization Facilities Center, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, supported in part by the Russian Federation Ministry of Science and Higher Education (research, experimental development, and technology projects, state registration no. AAAA-A19-119101590111-2).

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 19-33-90217) and the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Brekhovskikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastryukov, M.V., Brekhovskikh, M.N., Demina, L.I. et al. Preparation of High-Purity Tin Dichloride. Inorg Mater 58, 177–182 (2022). https://doi.org/10.1134/S0020168522020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522020108

Keywords:

Navigation