Skip to main content
Log in

Characterization of Functional Nanofilms on InP by Ultrasoft X-ray Emission and Infrared Spectroscopies

  • Published:
Inorganic Materials Aims and scope

Abstract—

The thermal oxidation of InP in the presence of both a MnO2 chemical stimulator layer produced on its surface by magnetron sputtering and a Mn3(PO4)2 modifier introduced through the gas phase leads to the formation of dielectric nanofilms. According to laser and spectral ellipsometry data, the proposed approach to InP surface modification makes it possible to considerably speed up film growth (by up to 150–200%) compared to stimulator-free oxidation of the semiconductor. The effective modifying impact of Mn3(PO4)2 has been demonstrated by ultrasoft X-ray emission spectroscopy (UXRES), which has confirmed the formation of tetrahedral oxygen coordination of phosphorus essentially throughout across the synthesized films. The UXRES results have been shown to correlate with IR spectroscopy data, which demonstrate the presence of indium and manganese phosphates and polyphosphates in the films: In(PO3)3, InPO4, and Mn3(PO4)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fundamentals of III–V Semiconductor MOSFETs, Oktyabrsky, S. and Ye, P.D., Eds., New York: Springer, 2010.https://doi.org/10.1007/978-1-4419-1547-4

  2. Alferov, Z.I., Andreev, V.M., and Rumyantsev, V.D., III–V solar cells and concentrator arrays, in High-Efficient Low-Cost Photovoltaics, Berlin, Heidelberg: Springer, 2009, pp. 101–141.https://doi.org/10.1007/978-3-030-22864-4_8

  3. Wasley, N.A., Nano-Photonics in III–V Semiconductors for Integrated Quantum Optical Circuits, Cham: Springer, 2014.https://doi.org/10.1007/978-3-319-01514-9

  4. Rudan, M., Physics of Semiconductor Devices, Cham: Springer, 2014. https://doi.org/10.1007/978-1-4939-1151-6

  5. Chen, J., Lv, J., and Wang, Q., Electronic properties of Al/MoO3/p-InP enhanced Schottky barrier contacts, Thin Solid Films, 2016, vol. 616, pp. 145–150.https://doi.org/10.1016/j.tsf.2016.08.019

    Article  CAS  Google Scholar 

  6. Balaram, N., Reddy, V.R., Reddy, P.R.S., Janardhanam, V., and Choi, C.-J., Microstructural, chemical states and electrical properties of Au/CuO/n-InP heterojunction with a cupric oxide interlayer, Vacuum, 2018, vol. 152, pp. 15–24.https://doi.org/10.1016/j.vacuum.2018.02.041

    Article  CAS  Google Scholar 

  7. Çetin, H. and Ayyildiz, E., The electrical properties of metal–oxide–semiconductor devices fabricated on the chemically etched n-InP substrate, Appl. Surf. Sci., 2007, vol. 253, no. 14, pp. 5961–5966.https://doi.org/10.1016/j.apsusc.2006.12.110

    Article  CAS  Google Scholar 

  8. Padma, R., Shanthi Latha, K., Reddy, V.R., and Choi, C.-J., Rapid thermal annealing effects on the electrical and structural properties of Ru/V/n-InP Schottky barrier diode, Superlattices Microstruct., 2015, vol. 83, pp. 48–60.https://doi.org/10.1016/j.spmi.2015.03.015

    Article  CAS  Google Scholar 

  9. Mittova, I.Ya., Influence of the physicochemical nature of chemical stimulators and the way they are introduced into a system on the mechanism of the thermal oxidation of GaAs and InP, Inorg. Mater., 2014, vol. 50, no. 9, pp. 874–881.https://doi.org/10.1134/S0020168514090088

    Article  CAS  Google Scholar 

  10. Mittova, I.Ya., Tomina, E.V., Lapenko, A.A., and Khorokhordina, A.O., Solid-state reactions during thermal oxidation of vanadium-modified GaAs surfaces, Inorg. Mater., 2004, vol. 40, no. 5, pp. 441–444.https://doi.org/10.1023/B:INMA.0000027588.78546.af

    Article  CAS  Google Scholar 

  11. Mittova, I.Ya., Tomina, E.V., Samsonov, A.A., Lukin, A.N., and Simonov, S.P., Thermal oxidation of InP surfaces modified with NiO + PbO mixtures, Inorg. Mater., 2005, vol. 41, no. 4, pp. 323–330.https://doi.org/10.1007/s10789-005-0132-y

    Article  CAS  Google Scholar 

  12. Sladkopevtcev, B.V., Tretyakov, N.N., Dontsov, A.I., Tomina, E.V., and Mittova, I.Ya., Effect of oxide composition (V2O5 + Al2O3) via gas phase on the thermal oxidation of InP, Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 2, pp. 260–268.

    CAS  Google Scholar 

  13. Rathi, M.K., Tsvid, G., Khandekar, A.A., Shin, J.C., Botez, D., and Kuech, T.F., Passivation of interfacial states for GaAs- and InGaAs/InP-based regrown nanostructures, J. Electron. Mater., 2009, no. 20038, pp. 2023–2032. https://doi.org/10.1007/s11664-009-0887-z

  14. Bessolov, V.N., Lebedev, M.V., and Konenkova, E.V., Sulfidization of GaAs in alcoholic solutions: a method having an impact on efficiency and stability of passivation, Mater. Sci. Eng., B, 1997, vol. 44, nos. 1–3, pp. 376–379.https://doi.org/10.1016/S0921-5107(96)01816-8

    Article  Google Scholar 

  15. Mittova, I.Ya., Sladkopevtsev, B.V., Samsonov, A.A., Tomina, E.V., Andreenko, S.Yu., and Kostenko, P.V., Growth and properties of nanofilms produced by the thermal oxidation of MnO2/InP under the effect of Mn3(PO4)2, Inorg. Mater., 2019, vol. 55, no. 9, pp. 915–919.https://doi.org/10.1134/S0020168519090073

    Article  CAS  Google Scholar 

  16. Mittova, I.Ya., Sladkopevtsev, B.V., Ilyasova, N.A., Tomina, E.V., Dontsov, A.I., and Tarasova, O.S., Effect of some complex chemical stimulators and modifiers in the thermal oxidation of InP, Kondens. Sredy Mezhfaznye Granitsy, 2020, vol. 22, no. 2, pp. 245–256.https://doi.org/10.17308/kcmf.2020.22/2851

    Article  CAS  Google Scholar 

  17. Mittova, I.Ya., Sladkopevtsev, B.V., Tomina, E.V., Samsonov, A.A., Tret’yakov, N.N., and Ponomarenko, S.V., Preparation of dielectric films via thermal oxidation of MnO2/GaAs, Inorg. Mater., 2018, vol. 54, no. 11, pp. 1085–1092.https://doi.org/10.1134/S0020168518110109

    Article  CAS  Google Scholar 

  18. Tret'yakov, N.N., Mittova, I.Ya., Sladkopevtsev, B.V., Samsonov, A.A., and Andreenko, S.Yu., Effect of a magnetron-sputtered MnO2 layer on the thermal oxidation kinetics of InP and the composition and morphology of the resultant films, Inorg. Mater., 2017, vol. 53, no. 1, pp. 65–71.https://doi.org/10.1134/S0020168517010174

    Article  CAS  Google Scholar 

  19. Yamaguchi, M. and Ando, K., Thermal Oxidation of InP and Properties of Oxide Films, J. Appl. Phys., 1980, vol. 51, no. 9, pp. 5007–5012.https://doi.org/10.1063/1.328380

    Article  CAS  Google Scholar 

  20. Sangwal, K., Etching of Crystals: Theory, Experiment, and Application, Amsterdam: Elsevier, 1987.

    Google Scholar 

  21. Mittova, I.Ya., Shvets, V.A., Tomina, E.V., Sladkopevtsev, B.V., Tret’yakov, N.N., and Lapenko, A.A., High-speed determination of the thickness and spectral ellipsometry investigation of films produced by the thermal oxidation of InP and VxOy/InP structures, Inorg. Mater., 2013, vol. 49, no. 2, pp. 179–184.https://doi.org/10.1134/S0020168513020143

    Article  CAS  Google Scholar 

  22. Zimkina, T.M. and Fomichev, V.A., Ul’tramyagkaya rentgenovskaya spektroskopiya (Ultrasoft X-Ray Spectroscopy), Leningrad: Leningradsk. Univ., 1971.

  23. Domashevskaya, E.P., Peshkov, Y.A., Terekhov, V.A., Yurakov, Y.A., and Barkov, K.A., Phase composition of the buried silicon interlayers in the amorphous multilayer nanostructures [(Co45Fe45Zr10)/a-Si:H]41 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]41, Surf. Interface Anal., 2018, vol. 50, nos. 12–13, pp. 1265–1270.https://doi.org/10.1002/sia.6515

    Article  CAS  Google Scholar 

  24. Samsonov, A.A., Mittova, I.Ya., Valyukhov, D.P., Tomina, E.V., and Lukin, A.N., Thermal oxidation of InP with V2O5 + PbO nanolayers of different compositions, Inorg. Mater., 2011, vol. 47, no. 2, pp. 100–106.https://doi.org/10.1134/S0020168511020154

    Article  CAS  Google Scholar 

  25. Wiech, G., X-ray emission bands and energy structure of pure phosphorous, III–V-phosphides and phosphates, Z. Phys., 1968, vol. 216, pp. 472–487.

    Article  CAS  Google Scholar 

  26. Andreev, V.M., Allakhverdiev, A.M., Ivent’eva, O.O., Kashkarov, V.M., Rumyantsev, V.D., and Terekhov, V.A., Photoluminescence properties and electronic structure of the surface of anodically oxidized n-InP, Fiz. Tekh. Poluprovodn. (Leningrad), 1985, vol. 19, no. 1, pp. 110–113.

    CAS  Google Scholar 

  27. Domashevskaya, E.P., Kashkarov, V.M., Seredin, P.V., Terekhov, V.A., Turishchev, S.Yu., Arsent’ev, I.N., and Ulin, V.P., Investigation of porous InP by X-ray diffraction, IR spectroscopy, USXES, XANES spectroscopy, and photoluminescence, Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, no. 4, pp. 439–442.

    Article  Google Scholar 

  28. Besland, M.P., Robach, Y., and Joseph, J., In-situ studies of the anodic oxidation of indium phosphide, J. Electrochem. Soc., 1993, vol. 140, pp. 104–108.

    Article  CAS  Google Scholar 

  29. Atlas IK-spektrov fosfatov (Atlas of IR Spectra of Phosphates), Mel’nikova, R.Ya., Ed., Moscow: Nauka, 1985.

Download references

ACKNOWLEDGMENTS

This study was carried out in part using equipment at the Shared Research Facilities Center, Voronezh State University (http://ckp.vsu.ru).

Funding

This work was supported in part by the Russian Federation Ministry of Science and Higher Education, state research target, grant. no. FZGU-2020-0036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Sladkopevtsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittova, I.Y., Barkov, K.A., Terekhov, V.A. et al. Characterization of Functional Nanofilms on InP by Ultrasoft X-ray Emission and Infrared Spectroscopies. Inorg Mater 57, 1258–1263 (2021). https://doi.org/10.1134/S0020168521120116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521120116

Keywords:

Navigation