Skip to main content
Log in

Ferrite-Based Solid Solutions: Structure Types, Preparation, Properties, and Potential Applications

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents a brief review of the state-of-the-art in the field of the preparation and characterization of the most widespread types of ferrites: ferrites with the spinel structure, hexaferrites, ferrites with the garnet structure, and orthoferrites. The present review is concerned primarily with advances in the synthesis and characterization of ferrites with various structures in the past two years (2020 and 2021). We compare available data on the feasibility of replacing trivalent Fe atoms by other atoms and discuss potential applications of ferrite solid solutions. The present results make it possible to identify promising directions of the development of this area of research and the associated current problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Tiwari, P., Verma, R., Kane, S.N., Tatarchuk, T., and Mazaleyrat, F., Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium–nickel nano ferrites, Mater. Chem. Phys., 2019, vol. 229, pp. 78–86. https://doi.org/10.1016/ j.matchemphys.2019.02.030

  2. Dantas, J., Leal, E., Cornejo, D.R., Kiminami, R.H.G.A., and Costa, A.C.F.M., Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4 synthesized in pilot-scale, Arab. J. Chem., 2020, vol. 13, no. 1, pp. 3026–3042. https://doi.org/10.1016/j.arabjc.2018.08.012

    Article  CAS  Google Scholar 

  3. Rady, K.E. and Elsad, R.A., Improvement the physical properties of nanocrystalline Ni–Zn ferrite using the substitution by (Mg–Ti) ions, J. Magn. Magn. Mater., 2020, vol. 498, paper 166195. https://doi.org/10.1016/j.jmmm.2019.166195

  4. Yi, Y., Peng, Y., Xia, C., Wu, L., Ke, X., and Nie, J., Influence of heat treatment on microstructures and magnetic properties of Fe-based soft magnetic composites prepared by co-precipitation method, J. Magn. Magn. Mater., 2019, vol. 476, pp. 100–105. https://doi.org/10.1016 / j.jmmm.2018.12.049

  5. Verma, R., Mazaleyrat, F., Deshpande, U.P., and Kane, S.N., Ni addition induced modification of structural, magnetic properties and bandgap of Ni–Zn nano ferrites, Mater. Today. Proc., 2020, vol. 32, no. 3, pp. 329–333. https://doi.org/10.1080/15421406.2019.1578519

    Article  CAS  Google Scholar 

  6. Pullar, R.C., Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 2012, vol. 57, no. 7, pp. 1191–1334. https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  7. Srinivas, C., Ranjith Kumar, E., Tirupanyam, B.V., Singh Meena, S., Bhatt, P., Prajapat, C.L., Chandrasekhar Rao, T.V., and Sastry, D.L., Study of magnetic behavior in co-precipitated Ni–Zn ferrite nanoparticles and their potential use for gas sensor applications, J. Magn. Magn. Mater., 2020, vol. 502, paper 166534. https://doi.org/10.1016/j.jmmm.2020.166534

  8. Ustinov, A., Kochemasov, V., and Khas’yanova, E., Ferrite materials for microwave electronic devices: selection criteria, Elektronika, 2015, no. 8, paper 00148.

  9. Cruickshank, D., Microwave Materials for Wireless Applications, Miami: Artech House, 2011.

    Google Scholar 

  10. Kalinikos, B., Ustinov, A., and Baruzdin, S., Spinvolnovye ustroistva i ekho-protsessory. Monografiya (Spin-Wave Devices and Echo Processors: A Monograph), Ushakov, V., Ed, Moscow: Radiotekhnika, 2013.

    Google Scholar 

  11. Vapne, G.M., Magnetostatic wave-based microwave devices, Obz. Elektron. Tekh., Ser. 1., 1984.

  12. Microwave ferrites (special issue), Proc. IEEE, 1988, vol. 76, no. 2, pp. 29–116.

  13. Ustinov, A., Tatarenko, A., Srinivasan, G., and Balbashov, A., Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices, J. Appl. Phys., 2009, vol. 105, paper 023908. https://doi.org/10.1063/1.3067759

  14. Hu, J., Ma, Y., Kan, X., Liu, C., Zhang, X., Rao, R., Wang, M., and Zheng, G., Investigations of Co substitution on the structural and magnetic properties of Ni–Zn spinel ferrite, J. Magn. Magn. Mater., 2020, vol. 513, paper 167200. https://doi.org/10.1016/j.jmmm.2020.167200

  15. Aggarwal, N. and Narang, S.B., Effect of co-substitution of Co–Zr on electromagnetic properties of Ni–Zn spinel ferrites at microwave frequencies, J. Alloys Compd., 2021, vol. 866, paper 157461. https://doi.org/10.1016/j.jallcom.2020.157461

  16. Kachniarz, M. and Salach, J., Characterization of magnetoelastic properties of Ni–Zn ferrite in wide range of magnetizing fields for stress sensing applications, Meas.: J. Int. Meas. Confed., 2021, vol. 168, paper 108301. https://doi.org/10.1016/j.measurement.2020.108301

  17. Mazen, S.A., Nawara, A.S., and Abu-Elsaad, N.I., Investigation of dielectric behavior in Ni0.7 – xZn0.3MxFe2O4 (M = Mn/Co/Cu) ferrites by impedance spectroscopy, Ceram. Int., 2021, vol. 47, no. 7, pp. 9856–9865. https://doi.org/10.1016/j.ceramint.2020.12.127

    Article  CAS  Google Scholar 

  18. Huang, H., Zou, Y., Zhou, W., Cheng, Z., Wu, Z., Liao, S., and Luo, G., Modulation the structural, magnetic and electrical properties of Ni–Zn ferrites by lutetium substitution, J. Mater. Sci.: Mater. Electron., 2021, vol. 32, pp. 4853–4861. https://doi.org/10.1007/s10854-020-05224-3

    Article  CAS  Google Scholar 

  19. Ratnaih, K., Venkata Krishna Prasad, N., Singampalli, R., Sarma, M.S.S.R.K.N., Choudary, G.S.V.R.K., and Kurapati, S.R., X-ray diffraction and magnetic properties of Nd substituted NiZnFe2O4 characterized by Rietveld refinement, Biointerface Res. Appl. Chem., 2021, vol. 11, no. 2, pp. 9062–9070. https://doi.org/10.33263/BRIAC112.90629070

    Article  CAS  Google Scholar 

  20. Wang, H., Li, J., Huo, X., Yue, C., Peng, B., Zhang, M., and Guo, M., Magnetic Ni–Zn spinel ferrite nanopowder from toxic Zn-bearing electric arc furnace dust: a promising treatment process, Miner. Eng., 2020, vol. 157, paper 106540. https://doi.org/10.1016/j.mineng.2020.106540

  21. Hu, J., Ma, Y., Kan, X., Liu, C., Zhang, X., Rao, R., Wang, M., and Zheng, G., Investigations of Co substitution on the structural and magnetic properties of Ni–Zn spinel ferrite, J. Magn. Magn. Mater., 2020, paper 167200. https://doi.org/10.1016/j.jmmm.2020.167200

  22. Akhtar, M.N., Yousaf, M., Lu, Y., Khan, M.A., Sarosh, A., Arshad, M., Niamat, M., Farhan, M., Ahmad, A., and Khallidoon, M.U., Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices, Ceram. Int., 2021, vol. 47, no. 9, pp. 11878–11886. https://doi.org/10.1016/j.ceramint.2021.01.028

    Article  CAS  Google Scholar 

  23. Neelima, P., Ramesh, T., Raju, P., and Murthy, S.R., Structural and microwave behavior of Dy3+-substituted Ni0.5Zn0.5DyxFe2 – xO4 ferrites, J. Mater. Sci.: Mater. Electron., 2021, vol. 32, no. 4, pp. 1–12. https://doi.org/10.1063/1.3309767

    Article  CAS  Google Scholar 

  24. Chintala, J.N.P.K., Kaushik, S.D., Varma, M.C., Choudary, G.S.V.R.K., and Rao, K.H., An accurate low temperature cation distribution of nano Ni–Zn ferrite having a very high saturation magnetization, J. Supercond. Nov. Magn., 2021, vol. 34, no. 1, pp. 149–156.

    Article  CAS  Google Scholar 

  25. Hezam, F.A., Khalifa, N.O., Nur, O., and Mustafa, M.A., Synthesis and magnetic properties of Ni0.5MgxZn0.5 – xFe2O4 (0.0 ≤ x ≤ 0.5) nanocrystalline spinel ferrites, Mater. Chem. Phys., 2021, vol. 257, paper 123770. https://doi.org/10.1016/j.matchemphys.2020.123770

  26. Taneja, S., Chahar, D., Thakur, P., and Thakur, A., Influence of bismuth doping on structural, electrical and dielectric properties of Ni–Zn nanoferrites, J. Alloys Compd., 2021, vol. 859, paper 157760. https://doi.org/10.1016/j.jallcom.2020.157760

  27. Abu-Elsaad, N.I., Mazen, S.A., and Nawara, A.S., Tertiary Ni0.7 – xZn0.3MxFe2O4 (M = Mn, Co, and Cu) spinel ferrites: electrical and dielectric properties, J. Alloys Compd., 2021, vol. 856, paper 157794. https://doi.org/10.1016/j.jallcom.2020.157794

  28. Gawas, S.G. and Verenkar, V.M.S., Selective sensing of oxidizing gases on Co—Ni–Zn ferrite: mechanism and response characteristics, Mater. Sci. Eng., B, 2021, vol. 265, paper 114948.

  29. Chakrabarty, S., Bandyopadhyay, S., Pal, M., and Dutta, A., Sol–gel derived cobalt containing Ni–Zn ferrite nanoparticles: dielectric relaxation and enhanced magnetic property study, Mater. Chem. Phys., 2021, vol. 259, paper 124193. https://doi.org/10.1016/j.matchemphys.2020.124193

  30. Kahmei, R.D.R., Arackal, S., Shivashankar, S.A., Bhat, N., and Sai, R., The impact of solvent tan δ on the magnetic characteristics of nanostructured NiZn-ferrite film deposited by microwave-assisted solvothermal technique, AIP Adv., 2021, vol. 11, no. 2, paper 0000190. https://doi.org/10.1063/9.0000190

  31. Ali, M.A., Uddin, M.M., Khan, M.N.I., Chowdhury, F.-U.-Z., Saha, D.K., Hoque, S.M., Liba, S.I., and Akhter, S., Effect of sintering temperature on structural and magnetic properties of Ni0.6Zn0.4Fe2O4 ferrite: synthesized from nanocrystalline powders, J. Phys. Conf. Ser., 2021, vol. 1718, no. 1, paper 012013. https://doi.org/10.1088/1742-6596/1718/1/012013

  32. Sherstyuk, D.P., Starikov, A.Y., Zhivulin, V.E., Zherebtsov, D.A., Gudkova, S.A., Perov, N.S., Alekhina, Y., Astapovich, K.A., Vinnik, D.A., and Trukhanov, A.V., Effect of Co content on magnetic features and spin states in Ni–Zn spinel ferrites, Ceram. Int., 2021, vol. 47, no. 9, pp. 12163–12169. https://doi.org/10.1016/j.ceramint.2021.01.063

    Article  CAS  Google Scholar 

  33. Li, K., Zhang, J., Zhang, Q., Filippov, D.A., Wu, J., Tao, J., Jiang, L., Cao, L., and Srinivasan, G., Bi-stable magnetoelectric data flip-flop triggered by magnetic field, J. Mater. Sci.: Mater. Electron., 2021, vol. 32, no. 2, pp. 1–9. https://doi.org/10.1007/s10854-020-04989-x

    Article  CAS  Google Scholar 

  34. Jadhav, S.A., Khedkar, M.V., Andhare, D.D., Gopale, S.B., and Jadhav, K.M., Visible light photocatalytic activity of magnetically diluted Ni–Zn spinel ferrite for active degradation of Rhodamine B, Ceram. Int., 2021, vol. 47, no. 10, pp. 13980–13993. https://doi.org/10.1016/j.ceramint.2021.01.267

    Article  CAS  Google Scholar 

  35. Mazen, S., Abu-Elsaad, N.I., and Nawara, A.S., The influence of various divalent metal ions (Mn2+, Co2+, and Cu2+) substitution on the structural and magnetic properties of nickel–zinc spinel ferrite, Phys. Solid State, 2020, vol. 62, no. 7, pp. 1183–1194.

    Article  CAS  Google Scholar 

  36. Aref Omri, Dhahri, E., and Costa, B.F.O., Structural, electric and dielectric properties of Ni0.5Zn0.5FeCoO4 ferrite prepared by sol–gel, J. Magn. Magn. Mater., 2020, vol. 499, paper 166243. https://doi.org/10.1016/j.jmmm.2019.166243

  37. Barba, A., Clausell, C., Jarque, J.C., and Nuño, L., Magnetic complex permeability (imaginary part) dependence on the microstructure of a Cu-doped Ni–Zn-polycrystalline sintered ferrite, Ceram. Int., 2020, vol. 46, no. 10, pp. 14558–14566. https://doi.org/10.1016/j.ceramint.2020.02.255

    Article  CAS  Google Scholar 

  38. Maria, K.H., Akther, U.S., Esha, I.N., Hossain, M.S., and Khan, M.N.I., Estimation of structural, electrical, and magnetic variations of Mn–Ni–Zn ferrites by substituting rare earth Y3+ for high-frequency applications, J. Supercond. Nov. Magn., 2020, vol. 33, pp. 2133–2142. https://doi.org/10.1007/s10948-020-05471-9

    Article  CAS  Google Scholar 

  39. Gauns Dessai, P.P., Meena, S.S., and Verenkar, V.M.S., Influence of addition of Al3+ on the structural and solid state properties of nanosized Ni–Zn ferrites synthesized using maleic acid as a novel fuel, J. Alloys Compd., 2020, paper 155855. https://doi.org/10.1016/j.jallcom.2020.155855

  40. Ega, C.S., Rajesh Babu, B., Ramesh, K.V., Sreenivasulu, M., and Purushotham, Y., Correlation between structural, magnetic and dielectric properties of microwave sintered Ni–Zn–Al nanoferrites, J. Supercond. Nov. Magn., 2020, vol. 32, pp. 3525–3534. https://doi.org/10.1007/s10948-019-5097-1

    Article  CAS  Google Scholar 

  41. Zhou, X., Chuai, D., and Zhu, D., Electrospun synthesis of reduced graphene oxide (RGO)/NiZn ferrite nanocomposites for excellent microwave absorption properties, J. Supercond. Nov. Magn., 2019, vol. 32, no. 8, pp. 2687–2697. https://doi.org/10.1007/s10948-019-5039-y

    Article  CAS  Google Scholar 

  42. Parmar, D.D., Dhruv, P.N., Meena, S.S., Kavita, S., Sandhu, C.S., Ellouze, M., and Jotania, R.B., Effect of copper substitution on the structural, magnetic, and dielectric properties of M-type lead hexaferrite, J. Electron. Mater., 2020, vol. 49, no. 10, pp. 6024–6039. https://doi.org/10.1007/s11664-020-08326-0

    Article  CAS  Google Scholar 

  43. Jayakumar, T., Aarthi, R., Raja, C.R., and Arumugam, S., Analysis of structural, spectral and magnetic properties of pure and Pb-/Zr-substituted strontium hexaferrite, J. Supercond. Nov. Magn., 2020, vol. 33, no. 12, pp. 3937–3940. https://doi.org/10.1007/s10948-020-05659-z

    Article  CAS  Google Scholar 

  44. Gupta, A. and Roy, P.K., Synthesis and tuning the electro-magnetic properties of Co–Cr substituted Sr-hexaferrite towards diverse usages, Mater. Sci. Eng., B, 2012, vol. 263. https://doi.org/10.1016/j.mseb.2020.114815

  45. Huang, K., Yu, J., Zhang, L., Xu, J., Li, P., Yang, Z., Liu, C., Wang, W., and Kan, X., Synthesis and characterizations of magnesium and titanium doped M-type barium calcium hexaferrites by a solid state reaction method, J. Alloys Compd., 2020, vol. 825. https://doi.org/10.1016/j.jallcom.2020.154072

  46. Adi, W.A., Yunasfi Sarwanto, Y., and Majidi, M.A., Effect of Mn and Ti addition on the crystallographic structure and magnetic properties of SrFe12O19, J. Teknol., 2020, vol. 82, no. 4, pp. 39–45. https://doi.org/10.11113/jt.v82.14246

    Article  Google Scholar 

  47. Patel, C.D., Dhruv, P.N., Meena, S.S., Singh, C., Kavita, S., Ellouze, M., and Jotania, R.B., Influence of Co4+–Ca2+ substitution on structural, microstructure, magnetic, electrical and impedance characteristics of M-type barium–strontium hexagonal ferrites, Ceram. Int., 2020, vol. 46, no. 16, pp. 24816–24830. https://doi.org/10.1016/j.ceramint.2020.05.326

    Article  CAS  Google Scholar 

  48. Shirsath, S.E., Kadam, R.H., Batoo, K.M., Wang, D., and Li, S., Co–Al-substituted strontium hexaferrite for rare earth free permanent magnet and microwave absorber application, J. Phys. D: Appl. Phys., 2021, vol. 54, no. 2. https://doi.org/10.1088/1361-6463/abb9d5

  49. Yang, Y., Feng, S., Kan, X., Lv, Q., Trukhanov, A.V., and Trukhanov, S.V., Synthesis, magnetic and electrical characteristics of Ba–Sr hexaferrites substituted with samarium, chromium and aluminum, Chem. Select., 2021, vol. 6, no. 3, pp. 470–479. https://doi.org/10.1002/slct.202002620

    Article  CAS  Google Scholar 

  50. Slimani, Y., Almessiere, M.A., Guner, S., Kurtan, U., and Baykal, A., Impacts of sol–gel auto-combustion and ultrasonication approaches on structural, magnetic, and optical properties of Sm–Tm co-substituted Sr0.5Ba0.5Fe12O19 nanohexaferrites: comparative study, Nanomaterials, 2020, vol. 10, no. 2. https://doi.org/10.3390/nano10020272

  51. Anjum, S., Sattar, M., and Mustafa, Z., Structural, optical and multiferroic properties of La+3-substituted M-type barium hexaferrite properties BaLaxFe12 − xO19, J. Mater. Sci.: Mater. Electron., 2021, vol. 35, no. 5, pp. 1–14. https://doi.org/10.1007/s10854-020-04759-9

    Article  CAS  Google Scholar 

  52. Lim, E.-S., Kim, H.K.D., and Kang, Y.-M., Control of electromagnetic wave absorption properties in La–Co–Ti substituted M-type hexaferrite–epoxy composites, J. Magn. Magn. Mater., 2021, vol. 517. https://doi.org/10.1016/j.jmmm.2020.167397

  53. Verma, S., Mahadevan, S., Pahwa, C., Singh, A.P., Narang, S.B., Aggarwal, N., and Sharma, P., Improved magnetic and microwave properties of La-substituted barium hexaferrite screen-printed thick films, J. Supercond. Nov. Magn., 2020, vol. 33, no. 8, pp. 2507–2512. https://doi.org/10.1007/s10948-020-05494-2

    Article  CAS  Google Scholar 

  54. Al-Garalleh, G.A., Mahmood, S.H., Bsoul, I., and Loloee, R., Structural and magnetic properties of RE–Al substituted nanocrystalline hexaferrites (Sr1 – xRExAl2Fe10O19), Mater. Res. Express, 2020, vol. 7, no. 2. https://doi.org/10.1088/2053-1591/ab5ddd

  55. Hessien, M.M., El-Bagoury, N., Mahmoud, M.H.H., Alsawat, M., Alanazi, A.K., and Rashad, M.M., Implementation of La3+ ion substituted M-type strontium hexaferrite powders for enhancement of magnetic properties, J. Magn. Magn. Mater., 2020, vol. 498. https://doi.org/10.1016/j.jmmm.2019.166187

  56. Vinnik, D.A., Trofimov, E.A., Zhivulin, V.E., Zaitseva, O.V., Zherebtsov, D.A., Starikov, A.Y., Sherstyuk, D.P., Gudkova, S.A., and Taskaev, S.V., The new extremely substituted high entropy (Ba,Sr,Ca,La)Fe6 – x (Al,Ti,Cr,Ga,In,Cu,W)xO19 microcrystals with magnetoplumbite structure, Ceram. Int., 2020, vol. 46, no. 7, pp. 9656–9660. https://doi.org/10.1016/j.ceramint.2019.12.232

    Article  CAS  Google Scholar 

  57. Vinnik, D.A., Trukhanov, A.V., Podgornov, F.V., Trofimov, E.A., Zhivulin, V.E., Starikov, A.Y., Zaitseva, O.V., Gudkova, S.A., Kirsanova, A.A., Taskaev, S.V., Uchaev, D.A., Trukhanov, S.V., Almessiere, M.A., Slimani, Y., and Baykal, A., Correlation between entropy state, crystal structure, magnetic and electrical properties in M-type Ba-hexaferrites, J. Eur. Ceram. Soc., 2020, vol. 40, no. 12, pp. 4022–4028. https://doi.org/10.1016/j.jeurceramsoc.2020.04.036

    Article  CAS  Google Scholar 

  58. Trukhanov, A.V., Vinnik, D.A., Trofimov, E.A., Zhivulin, V.E., Zaitseva, O.V., Taskaev, S.V., Zhou, D., Astapovich, K.A., Trukhanov, S.V., and Yang, Y., Correlation of the Fe content and entropy state in multiple substituted hexagonal ferrites with magnetoplumbite structure, Ceram. Int., 2021, vol. 47, no. 12. https://doi.org/10.1016/j.ceramint.2021.03.088

  59. Zhivulin, V.E., Trofimov, E.A., Starikov, A.Y., Gudkova, S.A., Punda, A.Y., Zherebtsov, D.A., Zaitseva, O.V., and Vinnik, D.A., New high-entropy oxide phases with the magnetoplumbite structure, IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1014, paper 012062. https://doi.org/10.1088/1757-899X/1014/1/012062

  60. Carvalheiras, J., Novais, R.M., Mohseni, F., Amaral, J.S., Seabra, M.P., Labrincha, J.A., and Pullar, R.C., Synthesis of red mud derived M-type barium hexaferrites with tuneable coercivity, Ceram. Int., 2020, vol. 46, no. 5, pp. 5757–5764. https://doi.org/10.1016/j.ceramint.2019.11.025

    Article  CAS  Google Scholar 

  61. Güner, S., Almessiere, M.A., Slimani, Y., Baykal, A., and Ercan, I., Microstructure, magnetic and optical properties of Nb3+ and Y3+ ions co-substituted Sr hexaferrites, Ceram. Int., 2020, vol. 46, no. 4, pp. 4610–4618. https://doi.org/10.1016/j.ceramint.2019.10.191

    Article  CAS  Google Scholar 

  62. Li, H., Zheng, L., Deng, D., Yi, X., Zhang, X., Luo, X., Wu, Y., Luo, W., and Zhang, M., Multiple natural resonances broaden microwave absorption bandwidth of substituted M-type hexaferrites, J. Alloys Compd., 2021, vol. 862. https://doi.org/10.1016/j.jallcom.2021.158638

  63. Kaur, H., Marwaha, A., Singh, C., Narang, S.B., Jotania, R., Bai, Y., Mishra, S.R., Singh, D., Sombra, A.S.B., Ghimire, M., and Dhruv, P., Tailoring of electromagnetic absorption in substituted hexaferrites from 8.2 GHz to 12.4 GHz, J. Electron. Mater., 2020, vol. 49, no. 3, pp. 1646–1653. https://doi.org/10.1007/s11664-019-07498-8

    Article  CAS  Google Scholar 

  64. Guo, K. and Niu, X., Nd–Zn co-substituted M-type strontium hexaferrites with enhanced magnetic properties, J. Supercond. Nov. Magn., 2021, vol. 34, pp. 1009–1018. https://doi.org/10.1007/s10948-021-05804-2

    Article  CAS  Google Scholar 

  65. Selvaraj, S., Gandhi, U., Berchmans, L.J., and Mangalanathan, U., Effect of magnetic ion substitution on the structure and temperature-dependent magnetic properties of strontium hexaferrite, Mater. Technol., 2021, vol. 36, no. 1, pp. 36–45. https://doi.org/10.1080/10667857.2020.1723832

    Article  CAS  Google Scholar 

  66. Anantharamaiah, P.N., Chandra, N.S., Shashanka, H.M., Kumar, R., and Sahoo, B., Magnetic and catalytic properties of Cu-substituted SrFe12O19 synthesized by tartrate-gel method, Adv. Powder Tech., 2020, vol. 31, no. 6, pp. 2385–2393. https://doi.org/10.1016/j.apt.2020.04.004

    Article  CAS  Google Scholar 

  67. Ashraf, G.A., Rasool, R.T., Hassan, M., and Zhang, L., Enhanced photo Fenton-like activity by effective and stable Al–Sm M-hexaferrite heterogeneous catalyst magnetically detachable for methylene blue degradation, J. Alloys Compd., 2020, vol. 821. https://doi.org/10.1016/j.jallcom.2019.153410

  68. Khandani, M., Yousefi, M., Afghahi, S.S.S., Amini, M.M., and Bikhof, TorbatiM., Sr(CeNd)xFe12 − 2xO19/polythiophene nano-particles: structural investigation, magnetic properties and photocatalytic activity, Inorg. Chem. Commun., 2020, vol. 121. https://doi.org/10.1016/j.inoche.2020.108214

  69. Häßner, M., Vinnik, D.A., and Niewa, R., Structure and magnetic properties of a new hexaferrite (Ba,Pb)(Fe,Ti)9O15, Ceram. Int., 2021, vol. 47, no. 4, pp. 5341–5346. https://doi.org/10.1016/j.ceramint.2020.10.115

    Article  CAS  Google Scholar 

  70. Zareen, M., Yasmin, N., Malik, I.A., Zahid, M., Ashiq, M.N., Kiran, A., Javed, H., Safdar, M., and Mirza, M., Influence of Ce–Mn substitution on dielectric and magnetic properties of strontium based X-type hexaferrites, J. Magn. Magn. Mater., 2020, vol. 497. https://doi.org/10.1016/j.jmmm.2019.165943

  71. Gupta, T., Chauhan, C.C., Kagdi, A.R., Meena, S.S., Jotania, R.B., Singh, C., and Basak, C.B., Investigation on structural, hysteresis, Mössbauer properties and electrical parameters of lightly erbium substituted X-type Ba2Co2ErxFe28 – xO46 hexaferrites, Ceram. Int., 2020, vol. 46, no. 6, pp. 8209–8226. https://doi.org/10.1016/j.ceramint.2019.12.049

    Article  CAS  Google Scholar 

  72. Dmour, M.K., Al-Hwaitat, E.S., Maswadeh, Y., Bsoul, I., and Mahmood, S.H., Preparation and characterization of rare earth–zinc substituted X-type hexaferrites, J. Alloys Compd., 2020, vol. 836. https://doi.org/10.1016/j.jallcom.2020.155396

  73. Zhang, M., Liu, H., Pan, L., Zhu, G., Li, Q., and Cui, C., Structural and magnetic properties of Ni-substituted Ba0.5Sr1.5-based Y-type hexaferrite, J. Mater. Sci.: Mater. Electron., 2020, vol. 31, no. 10, pp. 7642–7648. https://doi.org/10.1007/s10854-020-03300-2

    Article  CAS  Google Scholar 

  74. Manendar, M., Reddy, S.S.K., Ramesh, J., Reddy, M.S., Raja, M.M., Reddy, C.G., Reddy, P.Y., and Reddy, V.R., Cation distribution in Ni substituted Ba0.5Sr1.5Co2Fe12O22 Y-type hexagonal ferrites, Ceram. Int., 2021, vol. 47, no. 7, pp. 9591–9596. https://doi.org/10.1016 / j.ceramint.2020.12.094

  75. Dhruv, P.N., Meena, S.S., Pullar, R.C., Carvalho, F.E., Jotania, R.B., Bhatt, P., Prajapat, C.L., Barros Machado, J.P., Rao, T.V.C., and Basak, C.B., Investigation of structural, magnetic and dielectric properties of gallium substituted Z-type Sr3Co2 – xGaxFe24O41 hexaferrites for microwave absorbers, J. Alloys Compd., 2020, vol. 822. https://doi.org/10.1016/j.jallcom.2019.153470

  76. Saeed, S., Sadiq, I., Hussain, S., Idrees, M., Sadiq, F., Riaz, S., and Naseem, S., La3+-substituted β-ferrite: investigation of structural, dielectric, FTIR and electrical polarization properties, J. Alloys Compd., 2020, vol. 831. https://doi.org/10.1016/j.jallcom.2020.154854

  77. Yang, Y., Liu, X., Feng, S., Lv, Q., Kan, X., and Zhu, R., Impacts of praseodymium substitution on structural, spectral, magnetic and electrical properties of strontium W-type hexaferrites, J. Ceram. Process. Res., 2020, vol. 21, no. 3, pp. 378–385. https://doi.org/10.36410/jcpr.2020.21.3.378

  78. Choi, S., You, J.-H., Bon, C.Y., Park, S.-Y., and Yoo, S.-I., Enhanced microwave absorption properties of Zn-substituted SrW-type hexaferrite composites in the Ku-band, Ceram. Int., 2021, vol. 47, no. 6, pp. 7571–7581. https://doi.org/10.1016/j.jmmm.2019.165640

    Article  CAS  Google Scholar 

  79. Jeong, K.-P., Yang, S.-W., Choi, J.-H., and Kim, J.-G., Microwave absorption characteristics of U-type ferrite powders according to substitution elements and its compositions, Met. Mater. Int., 2020. https://doi.org/10.1007/s12540-020-00613-z

  80. Polat, O., Caglar, M., Coskun, F.M., Sobola, D., Konečný, M., Coskun, M., Caglar, Y., and Turut, A., Examination of optical properties of YbFeO3 films via doping transition element osmium, Opt. Mater., 2020, vol. 105. https://doi.org/10.1016/j.optmat.2020.109911

  81. Polat, O., Coskun, M., Sobola, D., Kurt, B.Z., Caglar, M., and Turut, A., Electrical and optical characterization of Os-substituted rare-earth orthoferrite YbFeO3 – γ powders, Appl. Phys. A: Mater. Sci. Process., 2021, vol. 127, no. 1. https://doi.org/10.1007/s00339-020-04182-1

  82. Polat, O., Caglar, M., Coskun, F.M., Coskun, M., Caglar, Y., and Turut, A., An investigation of the optical properties of YbFe1 – xIrxO3 – ẟ (x = 0, 0.01 and 0.10) orthoferrite films, Vacuum, 2020, vol. 173. https://doi.org/10.1016/j.vacuum.2019.109124

  83. Purnamasari, I. and Triyono, D., Effect of zirconium substitution on structural and optical properties of lanthanum orthoferrite, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 902, paper 012031. https://doi.org/10.1088/1757-899X/902/1/012031

  84. Ateia, E.E., Ismail, H., Elshimy, H., and Abdelmaksoud, M.K., Structural and magnetic tuning of LaFeO3 orthoferrite substituted different rare earth elements to optimize their technological applications, J. Inorg. Organomet. Polym., 2021, vol. 31, no. 4, pp. 1713–1725. https://doi.org/10.1007/s10904-021-01887-5

    Article  CAS  Google Scholar 

  85. Gabal, M.A., Al-Solami, F., Al Angari, Y.M., Awad, A., Al-Juaid, A.A., and Saeed, A., Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route, J. Mater. Sci.: Mater. Electron., 2020, vol. 31, no. 4, pp. 3146–3158. https://doi.org/10.1007/s10854-020-02861-6

    Article  CAS  Google Scholar 

  86. He, F., Li, X., Zhao, K., Huang, Z., Wei, G., and Li, H., The use of La1 − xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane, Fuel, 2013, vol. 108, pp. 465–473. https://doi.org/10.1016/j.fuel.2012.11.035

    Article  CAS  Google Scholar 

  87. Kafa, C.A., Triyono, D., and Laysandra, H., Effect of Sr substitution on the room temperature electrical properties of La1 − xSrxFeO3 nano-crystalline materials, AIP Conf. Proc., 2017, vol. 1862, paper 030042. https://doi.org/

  88. Rai, A. and Thakur, A.K., Co-substitution tailored dielectric relaxation and electrical conduction in lanthanum orthoferrite, Ceram. Int., 2020, vol. 46, no. 14, pp. 22752–22765. https://doi.org/10.1016/j.ceramint.2020.06.042

    Article  CAS  Google Scholar 

  89. Abhirami, S. and Sathik Basha, S., Phase stabilization and effect of trivalent lanthanide substitution on Dy2FeMnO6 double perovskite compounds, Vacuum, 2020, vol. 177. https://doi.org/10.1016/j.vacuum.2020.109412

  90. Duong, N.P., Thuy Nguyet, D.T., Loan, T.T., Anh, L.N., Soontaranon, S., Klysubun, W., and Viet Nga, T.T., Effects of Sn4+ doping and oxygen vacancy on magnetic and electrical properties of yttrium iron garnet prepared by sol–gel method, Ceram. Int., 2021, vol. 47, no. 5, pp. 6442–6452. https://doi.org/10.1016/j.ceramint.2020.10.226

    Article  CAS  Google Scholar 

  91. Dastjerdi, O.D., Shokrollahi, H., and Raad, N.A., Magnetic behavior and characterization of La, Pr, and Bi substituted yttrium iron garnet, Mater. Chem. Phys., 2021, vol. 259. https://doi.org/10.1016/j.matchemphys.2020.124067

Download references

Funding

The reported study was funded by RFBR, project number 20-13-50436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Vinnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinnik, D.A., Gudkova, S.A., Zhivulin, V.E. et al. Ferrite-Based Solid Solutions: Structure Types, Preparation, Properties, and Potential Applications. Inorg Mater 57, 1109–1118 (2021). https://doi.org/10.1134/S0020168521110133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521110133

Keywords:

Navigation