Skip to main content
Log in

Aluminosilicate inorganic polymers (geopolymers) containing rare earth ions: a new class of photoluminescent materials

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chemosynthetic aluminosilicate inorganic polymers exhibiting photoluminescent properties were prepared by introducing rare earth activator ions (Sm3+ or Eu3+) into the aluminosilicate structure by ion exchange. Under ~400 nm excitation, the materials showed the characteristic 4f–4f emission peaks of Sm3+ and Eu3+ ions and also broad emission bands in the blue and green regions that were also exhibited by the unexchanged inorganic polymer host. The host and the corresponding phosphors were characterised by XRD, 27Al and 29Si MAS NMR, PIXE and XPS. The photoluminescence intensities of the aluminosilicate inorganic polymers containing Sm3+ and Eu3+ were considerably enhanced by heating in air at >800 °C. The best phosphors were heated at 1200 °C, forming a mixture of crystalline KAlSi2O6 (leucite) and the residual aluminosilicate inorganic polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Levine AK, Palilla FC (1964) A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television. Appl Phys Lett 5:118

    Article  Google Scholar 

  2. Filho PCDS, Lima JF, Serra OA (2015) From lighting to photoprotection: fundamentals and applications of rare earth materials. J Braz Chem Soc 26:2471–2495

    Google Scholar 

  3. Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2:309–317. doi:10.1016/S1466-6049(00)00041-6

    Article  Google Scholar 

  4. Brew DRM, MacKenzie KJD (2007) Geopolymer synthesis using silica fume and sodium aluminate. J Mater Sci 42:3990–3993. doi:10.1007/s10853-006-0376-1

    Article  Google Scholar 

  5. O’Connor SJ, MacKenzie KJD, Smith ME, Hanna JV (2010) Ion exchange in the charge-balancing sites of aluminosilicate inorganic polymers. J Mater Chem 20:10234–10240. doi:10.1039/c0jm01254h

    Article  Google Scholar 

  6. Gasca-Tirado JR, Rubio-Ávalos JC, Muñiz-Villarreal MS, Manzano-Ramírez A, Reyes-Araiza JL, Sampieri-Bulbarela S, Villaseñor-Mora C, Pérez-Bueno JJ, Apatiga LM, Amigó Borrás V (2011) Effect of porosity on the absorbed, reemitted and transmitted light by a geopolymer metakaolin base. Mater Lett 65:880–883. doi:10.1016/j.matlet.2010.12.003

    Article  Google Scholar 

  7. Gasca-Tirado JR, Manzano-Ramírez A, Villaseñor-Mora C, Muñiz-Villarreal MS, Zaldivar-Cadena AA, Rubio-Ávalos JC, Borrás VA, Mendoza RN (2012) Incorporation of photoactive TiO2 in an aluminosilicate inorganic polymer by ion exchange. Microporous Mesoporous Mater 153:282–287. doi:10.1016/j.micromeso.2011.11.026

    Article  Google Scholar 

  8. Falah M, Mackenzie KJD (2015) Synthesis and properties of novel photoactive composites of P25 titanium dioxide and copper (I) oxide with inorganic polymers. Ceram Int 41:13702–13708. doi:10.1016/j.ceramint.2015.07.198

    Article  Google Scholar 

  9. Park K, Kim H, Hakeem DA (2017) Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca, Sr)2Al2SiO7:Eu3+ phosphors. Dyes Pigm 136:70–77

    Article  Google Scholar 

  10. Lemanski K, Walerczyk W, Deren PJ (2016) Luminescent properties of europium ions in CaAl2SiO6. J Alloys Compd 672:595–599

    Article  Google Scholar 

  11. Chen J, Ma H, Liu Y (2016) Phosphor for white light emitting diodes. J Nanosci Nanotech 16:3506–3510

    Article  Google Scholar 

  12. Fang Y, Li H, Wang Y, Liu X (2010) Luminescent materials of annealed Eu3+-exchanged zeolite L crystals. Dalton Trans 39:11594–11598. doi:10.1039/c0dt00908c

    Article  Google Scholar 

  13. Li H, Ding Y, Wang Y (2012) Photoluminescence properties of Eu3+-exchanged zeolite L crystals annealed at 700 °C. Cryst Eng Commun 14:4767–4771. doi:10.1039/c2ce25179e

    Article  Google Scholar 

  14. Wu H, Yang X, Yu X, Liu J, Yang H, Lv H, Yin K (2009) Preparation and optical properties of Eu3+/Eu2+ in phosphors based on exchanging Eu3+-zeolite 13X. J Alloys Compd 480:867–869. doi:10.1016/j.jallcom.2009.02.050

    Article  Google Scholar 

  15. Rogers JJ, Mackenzie KJD, Trompetter WJ, Rees G, Hanna JV (2017) Novel photoluminescent materials based on gallium silicate inorganic polymer hosts activated with Sm3+ or Eu3+. J Non Cryst Solids 460:98–105. doi:10.1016/j.jnoncrysol.2017.01.002

    Article  Google Scholar 

  16. Durant AT, MacKenzie KJD, Maekawa H (2011) Synthesis and thermal behaviour of gallium-substituted aluminosilicate inorganic polymers. Dalton Trans 40:4865–4870. doi:10.1039/c0dt00941e

    Article  Google Scholar 

  17. MacKenzie KJD, Smith ME (2002) Multinuclear solid-state nuclear magnetic resonance of inorganic materials, Pergamon materials series, vol 6. Pergamon/Elsevier, Oxford

    Google Scholar 

  18. Kohn SC, Henderson CMB, Dupree R (1995) Si–AI order in leucite revisited: new information from an analcite-derived analogue. Am Mineral 80:705–714

    Article  Google Scholar 

  19. Juel M, Samuelsen BT, Kildemo M, Raaen S (2006) Valence variations of Sm on polycrystalline Ag. Surf Sci 600:1155–1159. doi:10.1016/j.susc.2006.01.010

    Article  Google Scholar 

  20. Mason MG, Lee S-T, Apai G, Davis RF, Shirley DA, Franciosi A, Weaver JH (1981) Particle-size-induced valence changes in samarium clusters. Phys Rev Lett 47:8–11

    Google Scholar 

  21. Swart HC, Nagpure IM, Ntwaeaborwa OM, Fisher GL, Terblans JJ (2012) Identification of Eu oxidation states in a doped Sr5(PO4)3F phosphor by TOF-SIMS imaging. Opt Express 20:17119–17125

    Article  Google Scholar 

  22. Zhang C, Yang J, Lin C, Li C, Lin J (2009) Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M = Ca, Sr, Ba) in air condition. J Solid State Chem 182:1673–1678

    Article  Google Scholar 

  23. Kanuchova M, Kozakova L, Drabova M, Sisol M, Estokova A, Kanuch J, Skvarla J (2015) Monitoring and characterization of creation of geopolymers prepared from fly ash and metakaolin by X-ray photoelectron spectroscopy method. Environ Prog Sustain Energy 34:841–849. doi:10.1002/ep.12068

    Article  Google Scholar 

  24. Kljajevi LM, Nenadovi S, Nenadovi T, Bundaleski NK, Todorovi BŽ, Pavlovi VB, Lj Z (2017) Structural and chemical properties of thermally treated geopolymer samples. Ceram Int. doi:10.1016/j.ceramint.2017.02.066

    Google Scholar 

  25. Li Z, Liu S (2007) Influence of slag as additive on compressive strength of fly ash-based geopolymer. J Mater Civ Eng 19:470–474

    Article  Google Scholar 

  26. Lin J, Huang Y, Zhang J, Gao J, Ding X, Huang Z, Tang C, Hu L, Chen D (2007) Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor. Chem Mater 19:2585–2588

    Article  Google Scholar 

  27. Dzwigaj S, Krafft J-M, Che M, Lim S, Haller GL (2003) Photoluminescence study of the introduction of V in Si-MCM-41: role of surface defects and their associated SiO- and SiOH groups. J Phys Chem B 107:3856–3861

    Article  Google Scholar 

  28. Jeziorowski H, Knoezinger H (1977) Laser induced electronic excitation of surface hydroxide ions and scattering background in laser raman spectra of oxide surfaces. Chem Phys Lett 51:519–522

    Article  Google Scholar 

  29. Morita M, Iwamura M, Rau D, Itoh M, Ishikawa Y, Andoh N (2007) Luminescence of metal ion-activated nanophosphor supported by nanoporous sol–gel SiO2 matrices. J Lumin 122–123:879–881. doi:10.1016/j.jlumin.2006.01.315

    Article  Google Scholar 

  30. Pedro SS, Nakamura O, Barthem RB, Sosman LP (2009) Photoluminescence and photoacoustic spectroscopies of Fe3+ in the LiGa5O8–LiGaSiO4–Li5GaSi2O8 system. J Fluoresc 19:211–219. doi:10.1007/s10895-008-0404-4

    Article  Google Scholar 

  31. Yoshida H, Chaskar MG, Kato Y, Hattori T (2003) Active sites on silica-supported zirconium oxide for photoinduced direct methane conversion and photoluminescence. J Photochem Photobiol A 160:47–53. doi:10.1016/S1010-6030(03)00220-X

    Article  Google Scholar 

  32. Salh R (2011) Defect related luminescence in silicon dioxide network: a review. In: Basu S (ed) Crystalline silicon properties and uses. InTech, pp 135–172

  33. Binnemans K (2015) Interpretation of europium (III) spectra. Coord Chem Rev 295:1–45. doi:10.1016/j.ccr.2015.02.015

    Article  Google Scholar 

  34. Yoon SJ, Hakeem DA, Park K (2016) Synthesis and photoluminescence properties of MgAl2O4:Eu3+ phosphors. Ceram Int 42:1261–1266

    Article  Google Scholar 

  35. Yang X, Tiam TS, Yu X, Demir HV, Sun XW (2011) Europium (II)-doped microporous zeolite derivatives with enhanced photoluminescence by isolating active luminescence centers. ACS Appl Mater Interfaces 3:4431–4436. doi:10.1021/am2012118

    Article  Google Scholar 

  36. Wang Y, Li H (2014) Luminescent materials of zeolite functionalized with lanthanides. Cryst Eng Commun 16:9764–9778. doi:10.1039/C4CE01455C

    Article  Google Scholar 

  37. Chen W, Sammynaiken R, Huang Y (2000) Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y. J Appl Phys 88:1424. doi:10.1063/1.373834

    Article  Google Scholar 

  38. Duxson P, Lukey GC, van Deventer JSJ (2007) Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J Mater Sci 42:3044–3054. doi:10.1007/s10853-006-0535-4

    Article  Google Scholar 

Download references

Acknowledgements

J.J.R. acknowledges the tenure of a Victoria Doctoral Scholarship under which this research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. D. MacKenzie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, J.J., MacKenzie, K.J.D. & Trompetter, W.J. Aluminosilicate inorganic polymers (geopolymers) containing rare earth ions: a new class of photoluminescent materials. J Mater Sci 52, 11370–11382 (2017). https://doi.org/10.1007/s10853-017-1316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1316-y

Keywords

Navigation