Skip to main content
Log in

Comparison of the Electrode Properties of Graphene Oxides Reduced Chemically, Thermally, or via Microwave Irradiation

  • Published:
Inorganic Materials Aims and scope

Abstract—

Samples prepared via chemical, thermal, and microwave reduction of graphene oxide have been characterized by elemental analysis, BET measurements, scanning electron microscopy, and IR spectroscopy and tested as supercapacitor electrode materials. A supercapacitor having electrodes from chemically reduced graphene oxide has been shown to have the highest specific capacitance and the best long-term cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rowley-Neale, S.J., Randviir, E.P., Abo Dena, A.S., and Banks, C.E., An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms, Appl. Mater. Today, 2018, vol. 10, pp. 218–226.

    Article  Google Scholar 

  2. Danilov, M.O., Slobodyanyuk, I.A., Rusetskii, I.A., and Kolbasov, G.Ya., Reduced graphene oxide: a promising electrode material for oxygen electrodes, J. Nanostruct. Chem., 2013, vol. 3, pp. 1–5.

    Article  Google Scholar 

  3. Abakumov, A.A., Bychko, I.B., Selyshchev, O.V., Zahn, D.R.T., Qi, X., Tang, J., and Strizhak, P.E., Catalytic properties of reduced graphene oxide in acetylene hydrogenation, Carbon, 2020, vol. 157, pp. 277–285.

    Article  CAS  Google Scholar 

  4. Grigoriev, S.A., Fateev, V.N., Pushkarev, A.S., Pushkareva, I.V., Ivanova, N.A., Kalinichenko, V.N., Presnyakov, M.Y., and Wei, X., Reduced graphene oxide and its modifications as catalyst supports and catalyst layer modifiers for PEMFC, Materials, 2018, vol. 11, no. 8, paper 1405.

  5. Yan, D.-X., Pang, H., Li, B., Vajtai, R., Xu, L., Ren, P.-C., Wang, J.-H., and Li, Z.-M., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding, Adv. Funct. Mater., 2015, vol. 25, pp. 559–566.

    Article  CAS  Google Scholar 

  6. Mural, P.K.S., Sharma, M., Madras, G., and Bose, S., A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites, RSC Adv., 2015, vol. 5, pp. 32078–32087.

    Article  CAS  Google Scholar 

  7. McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., and Aksay, I.A., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater., 2007, vol. 19, pp. 4396–4404.

    Article  CAS  Google Scholar 

  8. Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., and Aksay, I.A., Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B, 2006, vol. 110, pp. 8535–8539.

    Article  CAS  Google Scholar 

  9. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2008, vol. 2, pp. 463–470.

    Article  CAS  Google Scholar 

  10. Wang, X., Zhi, L., and Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 2008, vol. 8, pp. 323–327.

    Article  CAS  Google Scholar 

  11. Li, X., Wang, H., Robinson, J.T., Sanchez, H., Diankov, G., and Dai, H., Simultaneous nitrogen doping and reduction of graphene oxide, J. Am. Chem. Soc., 2009, vol. 131, pp. 15939–15944.

    Article  CAS  Google Scholar 

  12. Schwenke, A.M., Hoeppener, S., and Schubert, U.S., Microwave synthesis of carbon nanofibers – the influence of MW irradiation power, time, and the amount of catalyst, J. Mater. Chem. A, 2015, vol. 3, pp. 23778–23787.

    Article  CAS  Google Scholar 

  13. Hassan, H.M.A., Abdelsayed, V., Khder, A.E.R.S., Abou Zeid, K.M., Terner, J., El-Shall, M.S., Al-Resayes, S.I., and El-Azhary, A.A., Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media, J. Mater. Chem., 2009, vol. 19, pp. 3832–3837.

    Article  CAS  Google Scholar 

  14. Khai, T.V., Kwak, D.S., Kwon, Y.J., Cho, H.Y., Huan, T.N., Chung, H., Ham, H., Lee, C., Dan, N.V., Tung, N.T., and Kim, H.W., Direct production of highly conductive graphene with a low oxygen content by a microwave-assisted solvothermal method, Chem. Eng. J., 2013, vol. 232, pp. 346–355.

    Article  CAS  Google Scholar 

  15. Eng, A.Y.S., Sofer, Z., Šimek, P., Kosina, J., and Pumera, M., Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications, Chem. – Eur. J., 2013, vol. 19, pp. 15583–15592.

    Article  CAS  Google Scholar 

  16. Ovhal, S.D., Rodrigues, C.S.D., and Madeira, L.M., Photocatalytic wet peroxide assisted degradation of Orange II dye by reduced graphene oxide and zeolites, J. Chem. Technol. Biotechnol., 2020.https://doi.org/10.1002/jctb.6547

  17. Escudero, M.L., Llorente, I., Perez-Maceda, B.T., San Jose-Pinilla, S., Sanchez-Lopez, L., Lozano, R.M., Aguado-Henche, S., Clemente de Arriba, C., Alobera-Gracia, M.A., and Garcia-Alonso, M.C., Electrochemically reduced graphene oxide on CoCr biomedical alloy: characterization, macrophage biocompatibility and hemocompatibility in rats with graphene and graphene oxide, Mater. Sci. Eng., C, 2010, vol. 109, paper 110522.

  18. Bukkitgar, S.D., Shetti, N.P., Reddy, K.R., Saleh, T.A., and Aminabhavi, T.M., Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications, FlatChem, 2020, vol. 23, paper 100183.

  19. Das, P.S., Park, S.H., Baik, K.Y., Lee, J.W., and Park, J.Y., Thermally reduced graphene oxide–nylon membrane based epidermal sensor using vacuum filtration for wearable electrophysiological signals and human motion monitoring, Carbon, 2020, vol. 158, pp. 386–393.

    Article  CAS  Google Scholar 

  20. Tarcan, R., Todor-Boer, O., Petrovai, I., Leordean, C., Astilean, S., and Botiz, I., Reduced graphene oxide today, J. Mater. Chem. C, 2020, vol. 8, no. 4, pp. 1198–1224.

    Article  CAS  Google Scholar 

  21. Shulga, Y.M., Baskakov, S.A., Baskakova, Y.V., Volfkovich, Y.M., Shulga, N.Y., Skryleva, E.A., Parkhomenko, Y.N., Belay, K.G., Gutsev, G.L., Rychagov, A.Y., Sosenkin, V.E., and Kovalev, I.D., Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes, J. Power Sources, 2015, vol. 79, pp. 722–730.

    Article  Google Scholar 

  22. Jeong, H.K., Lee, Y.P., Jin, M.H., Kim, E.S., Bae, J.J., and Lee, Y.H., Thermal stability of graphite oxide, Chem. Phys. Lett., 2009, vol. 470, pp. 255–258.

    Article  CAS  Google Scholar 

  23. Si, Y. and Samulski, E.T., Synthesis of water soluble graphene, Nano Lett., 2008, vol. 8, pp. 1679–1682.

    Article  CAS  Google Scholar 

  24. Cote, L.J., Cruz-Silva, R., and Huang, J., Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc., 2009, vol. 131, pp. 11027–11032.

    Article  CAS  Google Scholar 

  25. Karthika, P., Rajalakshmi, N., and Dhathathreyan, K.S., Functionalized exfoliated graphene oxide as supercapacitor electrodes, Soft Nanosci. Lett., 2012, vol. 2, pp. 59–66.

    Article  CAS  Google Scholar 

  26. Fu, M., Jiao, Q., Zhao, Y., and Li, H., Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials, J. Mater. Chem. A, 2014, vol. 2, pp. 735–744.

    Article  CAS  Google Scholar 

  27. Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., and Bao, Z., Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett., 2011, vol. 11, no. 10, pp. 4438–4442.

    Article  CAS  Google Scholar 

  28. Qu, D. and Shi, H., Studies of activated carbons used in double-layer capacitors, J. Power Sources, 1998, vol. 74, pp. 99–107.

    Article  CAS  Google Scholar 

  29. Endo, M., Maeda, T., Takeda, T., Kim, Y.J., Koshiba, K., Hara, H., and Dresselhaus, M.S., Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes, J. Electrochem. Soc., 2001, vol. 148, no. 8, pp. A910–A914.

    Article  CAS  Google Scholar 

  30. Zhang, L.L. and Zhao, X.S., Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 2009, vol. 38, pp. 2520–2531.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target, state registration no. AAAA-A19-119061890019-5, theme no. 0089-2019-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Baskakov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskakov, S.A., Baskakova, Y.V., Kalmykova, D.S. et al. Comparison of the Electrode Properties of Graphene Oxides Reduced Chemically, Thermally, or via Microwave Irradiation. Inorg Mater 57, 262–268 (2021). https://doi.org/10.1134/S002016852103002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852103002X

Keywords:

Navigation