Skip to main content
Log in

Formation and Acid–Base Surface Properties of Highly Dispersed η-Al2O3 Nanopowders

  • Published:
Inorganic Materials Aims and scope

Abstract

Highly dispersed η-Al2O3-based nanopowders have been prepared via glycine–nitrate combustion followed by heat treatment in air. The resultant materials have been characterized by X-ray diffraction, Fourier transform IR spectroscopy, scanning electron microscopy, simultaneous thermal analysis, and other techniques. We have optimized the glycine-to-nitrate ratio (G/N = 0.2) and found heat treatment conditions for combustion products (isothermal holding at a temperature of 700°C for 6 h) that allow one to obtain single- phase nanocrystalline η-Al2O3 powders with an average particle size of 5 ± 1 nm and specific surface area of 54 ± 5 m2/g. The acid–base surface properties of the η-Al2O3 nanopowder have been analyzed using pyridine sorption–desorption processes as an example. The specific concentrations of weak, intermediate, and strong Lewis acid centers on the surface of the η-Al2O3 nanocrystals have been shown to markedly exceed those on the surface of commercially available γ-Al2O3 (A-64). The synthesized nanopowders can thus be used as effective supports of acid catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burukhin, A.A., Churagulov, B.R., Oleynikov, N.N., and Knot’ko, A.V., Hydrothermal synthesis of mesoporous iron oxide powders, Proc. Joint 6th Int. Symp. on Hydrothermal Reactions/4th Conf. on Solvo-Thermal Reactions, Kochi, 2000, pp. 561–564.

    Google Scholar 

  2. Meskin, P.E., Gavrilov, A.I., Maksimov, V.D., Ivanov, V.K., and Churagulov, B.R., Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia, Russ. J. Inorg. Chem., 2007, vol. 52, no. 11, pp. 1648–1656.

    Article  Google Scholar 

  3. Almjasheva, O.V. and Gusarov, V.V., Hydrothermal synthesis of nanosized and amorphous alumina in the ZrO2–Al2O3–H2O system, Russ. J. Inorg. Chem., 2007, vol. 52, no. 8, pp. 1194–1200.

    Article  Google Scholar 

  4. Ivanov, V.K., Baranchikov, A.E., Polezhaeva, O.S., Kopitsa, G.P., and Tret’yakov, Yu.D., Oxygen nonstoichiometry of nanocrystalline ceria, Russ. J. Inorg. Chem., 2010, vol. 55, no. 3, pp. 325–326.

    Article  CAS  Google Scholar 

  5. Jayakumar, G., Irudayaraj, A.A., Raj, A.D., and Anusuya, M., Investigation on the preparation and properties of nanostructured cerium oxide, Nanosyst. Phys. Chem. Math., 2016, vol. 7, no. 4, pp. 728–731.

    Article  Google Scholar 

  6. Vasilevskaya, A.K. and Al’myasheva, O.V., Characteristic features of phase formation in the ZrO2–TiO2 system under hydrothermal conditions, Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 4, pp. 75–81.

    Google Scholar 

  7. Cherepanov, V.A., Gavrilova, L.Ya., Volkova, N.E., Urusov, A.S., Aksenova, T.V., and Kiselev, E., Phase equilibria and thermodynamic properties of oxide systems on the basis of rare earth, alkaline earth and 3d-transition (Mn, Fe, Co) metals. A short overview of, Chim. Tech. Acta, 2015, vol. 2, no. 4, pp. 273–305.

    Article  Google Scholar 

  8. Vasilevskaya, A., Almjasheva, O.V., and Gusarov, V.V., Peculiarities of structural transformations in zirconia nanocrystals, J. Nanopart. Res., 2016, vol. 18, no. 7, paper188.

    Google Scholar 

  9. Ye, T., Guiwen, Z., Weiping, Z., and Shangda, X., Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors, Mater. Res. Bull., 1997, vol. 32, no. 5, pp. 501–506.

    Article  Google Scholar 

  10. Rempel, A.A., Nanotechnologies, properties, and application of nanostructured materials, Usp. Khim., 2007, vol. 76, no. 5, pp. 474–500.

    Article  Google Scholar 

  11. Shcherbakov, A.B., Ivanov, V.K., Zholobak, N.M., Ivanova, O.S., Krysanov, E.Yu., Baranchikov, A.E., Spivak, N.Ya., and Tretyakov, Yu.D., Nanocrystalline ceria based materials—perspectives for biomedical application, Biophysics (Moscow), 2011, vol. 56, no. 6, pp. 987–1004.

    Article  Google Scholar 

  12. Kozhevnikov, V.L., Leonidov, I.A., and Patrakeev, M.V., Mixed-conducting ceramic membranes and their applications, Usp. Khim., 2013, vol. 82, no. 8, pp. 772–782.

    Article  Google Scholar 

  13. Upadhyay, P.R. and Srivastava, V., Titanium dioxide supported ruthenium nanoparticles for carbon sequestration reaction, Nanosyst. Phys., Chem. Math., 2016, vol. 7, no. 6, pp. 513–517.

    Article  Google Scholar 

  14. Zhou, R.S. and Snyder, R.L., Structures and transformation mechanisms of the η, γ and θ transition aluminas, Acta Crystallogr., Sect. B: Struct. Sci., 1991, vol. 47, no. 5, pp. 617–630.

    Article  Google Scholar 

  15. Trueba, M. and Trasatti, S.P., γ-Alumina as a support for catalysts: a review of fundamental aspects, Eur. J. Inorg. Chem., 2005, vol. 2005, no. 17, pp. 3393–3403.

    Article  Google Scholar 

  16. Emeis, C.A., Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal., 1993, vol. 141, no. 2, pp. 347–354.

    Article  CAS  Google Scholar 

  17. Aleksenskii, A.E., Baidakova, M.V., Vul’, A.Ya., Davydov, V.Yu., and Pevtsova, Yu.A., Diamond–graphite phase transition in ultradisperse diamond clusters, Fiz. Tverd. Tela (St. Petersburg), 1997, vol. 39, no. 6, pp. 1125–1034.

    CAS  Google Scholar 

  18. Zhuravlev, V.D., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., Grigorov, I.G., Bamburov, V.G., Beketov, A.R., and Baranov, M.V., Glycine–nitrate combustion synthesis of finely dispersed alumina, Glass. Phys. Chem., 2010, vol. 36, no. 4, pp. 506–512.

    Article  CAS  Google Scholar 

  19. Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., Perelyaeva, L.A., Baklanova, I.V., Sivtsova, O.V., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., and Grigorov, I.G., Solution combustion synthesis of a-Al2O3 using urea, Ceram. Int., 2013, vol. 39, no. 2, pp. 1379–1384.

    Article  CAS  Google Scholar 

  20. Popkov, V.I. and Almjasheva, O.V., Yttrium orthoferrite YFeO3 nanopowders formation under glycine–nitrate combustion conditions, Russ. J. Appl. Phys., 2014, vol. 87, no. 2, pp. 167–171.

    CAS  Google Scholar 

  21. Khaliullin, Sh.M., Bamburov, V.G., Russkikh, O.V., Ostroushko, A.A., and Zhuravlev, V.D., CaZrO3 synthesis in combustion reactions with glycine, Dokl. Chem., 2015, vol. 461, no. 2, pp. 93–95.

    Article  CAS  Google Scholar 

  22. Dyachenko, S.V., Martinson, K.D., Cherepkova, I.A., and Zhernovoi, A.I., Particle size, morphology, and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type produced by glycine–nitrate combustion, Russ. J. Appl. Phys., 2016, vol. 89, no. 4, pp. 535–539.

    CAS  Google Scholar 

  23. Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Gusarov, V.V., Special features of formation of nanocrystalline BiFeO3 via the glycine–nitrate combustion method, Russ. J. Gen. Chem., 2016, vol. 86, no. 10, pp. 2256–2262.

    Article  CAS  Google Scholar 

  24. Komlev, A.A. and Vilezhaninov, E.F., Glycine–nitrate combustion synthesis of nanopowders based on nonstoichiometric magnesium–aluminum spinel, Russ. J. Appl. Phys., 2013, vol. 86, no. 9, pp. 1344–1350.

    CAS  Google Scholar 

  25. Khaliullin, S.M., Zhuravlev, V.D., and Bamburov, V.G., Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: thermodynamic aspects, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 3, pp. 139–148.

    Article  Google Scholar 

  26. Devyatkov, S.Yu., Zinnurova, A.A., Aho, A., Kronlund, D., Peltonen, J., Kuzichkin, N.V., Lisitsyn, N.V., and Murzin, D.Yu., Shaping of sulfated zirconia catalysts by extrusion: understanding the role of binders, Ind. Eng. Chem. Res., 2016, vol. 55, no. 23, pp. 6595–6606.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Popkov.

Additional information

Original Russian Text © N.E. Kotlovanova, A.N. Matveeva, Sh.O. Omarov, V.V. Sokolov, D.N. Akbaeva, V.I. Popkov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 4, pp. 410–418.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotlovanova, N.E., Matveeva, A.N., Omarov, S.O. et al. Formation and Acid–Base Surface Properties of Highly Dispersed η-Al2O3 Nanopowders. Inorg Mater 54, 392–400 (2018). https://doi.org/10.1134/S0020168518040052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518040052

Keywords

Navigation