Skip to main content
Log in

Synthesis and properties of In x Al y Ga1–xyP z As1–z/GaAs heterostructures

  • Published:
Inorganic Materials Aims and scope

Abstract

Phase equilibria in the In–Al–Ga–P–As system have been analyzed in terms of a simple solution model. We have calculated the stability limits of InAlGaPAs solid solutions on GaAs substrates in the temperature range 937–1223 K. The addition of indium to AlGaPAs solid solutions leads to a slight decrease in growth rate under diffusion control and a considerable increase under kinetic control. Moreover, the addition of indium to AlGaPAs solid solutions has been shown to reduce the full width at half maximum of their X-ray rocking curves and photoluminescence spectra and increase the photoluminescence intensity. Increasing the indium concentration in In x Al y Ga1–xyP z As1–z solid solutions to x > 0.3 extends their stability region, increases their band gap, and reduces the composition region of lattice-matched In x Al y Ga1–xyP z As1–z/GaAs heterostructures, but these become thermal expansion-matched. With increasing indium concentration in the solid solutions, the distribution coefficients of P and As decrease, whereas those of Al and In increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alferov, Zh.I., Past and future of semiconductor heterostructures, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1998, vol. 32, no. 1, pp. 3–17.

    CAS  Google Scholar 

  2. Dolginov, L.M., Eliseev, P.G., and Ismailov, I., Lightemitting injection devices based on multicomponent semiconductor solid solutions, Itogi Nauki Tekh., Ser.: Radiotekh., 1980, vol. 21, pp. 3–115.

    Google Scholar 

  3. Khvostikov, V.P., Lunin, L.S., Kuznetsov, V.V., Oliva, E.V., Khvostikova, O.A., and Shvarts, M.Z., InAs based multicomponent solid solutions for thermophotovoltaic converters, Tech. Phys. Lett., 2003, vol. 29, no. 10, pp. 851–855.

    Article  CAS  Google Scholar 

  4. Rogalski, A., New material systems for third generation infrared photodetectors, Opt.-Electron. Rev., 2008, vol. 16, no. 4, pp. 458–482.

    CAS  Google Scholar 

  5. Wang, C.A., Choi, H.K., and Ransom, S.L., High quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices, Appl. Phys. Lett., 1999, vol. 75, no. 9, pp. 1305–1309.

    Article  CAS  Google Scholar 

  6. Karandashev, S.A., Matveev, B.A., Remennyi, M.A., Shlenskii, A.A., Lunin, L.S., Ratushnyi, V.I., Koryuk, A.V., and Tarakanova, N.G., Properties of GaInAsSb/GaSb (λ = 1.8–2.3 μm) immersion lens photodiodes at 20–140°C, Semiconductors, 2007, vol. 41, no. 11, pp. 1369–1374.

    Article  CAS  Google Scholar 

  7. Kuznetsov, V.V., Lunin, L.S., and Ratushnyi, V.I., Geterostruktury na osnove chetvernykh i pyaternykh tverdykh rastvorov soedinenii AIIIBV (Heterostructures Based on Quaternary and Quinary Solid Solutions of III–V Compounds), Rostov-on-Don: SKNTsVSh, 2003, p. 375.

    Google Scholar 

  8. Lozovskii, V.N., Lunin, L.S., and Popov, V.P., Zonnaya perekristallizatsiya gradientom temperatury poluprovodnikovykh materialov (Temperature-Gradient Zone Recrystallization of Semiconductor Materials), Moscow: Metallurgiya, 1987.

    Google Scholar 

  9. Lozovskii, V.N., Lunin, L.S., and Askaryan, T.A., Physicochemical equilibria in quinary systems of III–V compound semiconductors, Izv. Akad. Nauk SSSR, Neorg. Mater., 1989, vol. 25, no. 11, pp. 1778–1786.

    CAS  Google Scholar 

  10. Lozovskii, V.N., Lunin, L.S., and Askaryan, T.A., A method for calculating isoparametric compositions and the band gap of quinary solid solutions based on III–V compounds, Izv. Vyssh. Uchebn. Zaved., Fiz., 1989, no. 7, pp. 41–47.

    Google Scholar 

  11. Stringfellow, G.G., Calculation of energy gap in quaternary III/V alloys, J. Electron. Mater., 1981, vol. 10, no. 5, pp. 919–939.

    Article  CAS  Google Scholar 

  12. Glisson, T.N., Hauser, J.S., Littlejoin, M.A., and Williams, C.K., Energy bandgap and lattice constant contours of III–V quaternary alloys, J. Electron. Mater., 1978, vol. 7, no. 1, pp. 1–16.

    Article  CAS  Google Scholar 

  13. Lozovskii, V.N. and Lunin, L.S., Pyatikomponentnye tverdye rastvory soedinenii A3B5(novye materialy optoelektroniki) (Quinary Solid Solutions of III–V Compounds: Novel Optoelectronic Materials), Rostov-on-Don: SKNTs VSh, 1992.

    Google Scholar 

  14. Lozovskii, V.N., Lunin, L.S., and Askaryan, T.A., Lattice and thermal expansion matching in quinary heterostructures based on III–V compounds, Izv. Vyssh. Uchebn. Zaved., Fiz., 1989, no. 1, pp. 59–64.

    Google Scholar 

  15. Lozovskii, V.N., Lunin, L.S., and Askaryan, T.A., Thermodynamic analysis of the stability of quinary solid solutions of III–V compounds, Izv. Akad. Nauk SSSR, Neorg. Mater., 1989, vol. 25, no. 4, pp. 540–546.

    CAS  Google Scholar 

  16. Kuznetsov, V.V., Kognovitskaya, E.A., Lunina, M.L., and Rubtsov, E.R., Bismuth in quaternary and quinary solid solutions based on A3B5 compounds, Russ. J. Phys. Chem. A, 2011, vol. 85, no. 12, pp. 2062–2067.

    Article  CAS  Google Scholar 

  17. Blagin, A.V., Barannik, A.A., Kireev, E.I., and Lunina, M.L., The kinetics of the crystallization in bismuth- containing heterosystems Al–In–Sb–Bi and Ga–As–P–Bi, Inorg. Mater., 2008, vol. 44, no. 12, pp. 1289–1292.

    Article  CAS  Google Scholar 

  18. Sinel’nikov, B.M. and Lunina, M.L., GaxIn1–x-BiyAszSb1–yz/InSb and InBiyAszSb1–yz/InSb heterostructures grown in a temperature gradient, Inorg. Mater., 2012, vol. 48, no. 9, pp. 877–883.

    Article  Google Scholar 

  19. Blagin, A.V., Valyukhov, D.P., Lunin, L.S., et al., Mass spectrometric study of GaInPAsSb/GaSb heterostructures, Inorg. Mater., 2008, vol. 44, no. 8, pp. 793–795.

    Article  CAS  Google Scholar 

  20. Peka, G.P., Kovalenko, V.F., and Kutsenko, V.N., Lyuminestsentnye metody kontrolya parametrov poluprovodnikovykh materialov i priborov (Luminescence Techniques for Assessing Parameters of Semiconductor Materials and Devices), Kiev: Tekhnika, 1986.

    Google Scholar 

  21. Alfimova, D.L., Lunin, L.S., Lunina, M.L., Pashchenko, A.S., and Chebotarev, S.N., Growth and properties of GaInPSbAs isoperiodic solid solutions on indium arsenide substrates, Phys. Solid State, 2016, vol. 58, no. 9, pp. 1751–1757.

    Article  CAS  Google Scholar 

  22. Alfimova, D.L., Lunin, L.S., and Lunina, M.L., Growth and properties of GayIn1–yPzAs1–xzBix solid solutions on GaP substrates, Inorg. Mater., 2014, vol. 50, no. 2, pp. 113–119.

    Article  CAS  Google Scholar 

  23. Alfimova, D.L., Lunin, L.S., and Lunina, M.L., Influence of growth conditions on the surface quality and structural perfection of multicomponent heterostructures based on group A3B5 compounds, J. Surf. Invest: X-Ray, Synchrotron Neutron Tech., 2014, no. 3, pp. 612–621.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lunin.

Additional information

Original Russian Text © D.L. Alfimova, L.S. Lunin, M.L. Lunina, A.E. Kazakova, A.S. Pashchenko, S.N. Chebotarev, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 12, pp. 1245–1256.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfimova, D.L., Lunin, L.S., Lunina, M.L. et al. Synthesis and properties of In x Al y Ga1–xyP z As1–z/GaAs heterostructures. Inorg Mater 53, 1217–1227 (2017). https://doi.org/10.1134/S0020168517120019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517120019

Keywords

Navigation