Skip to main content
Log in

Molecular dynamics in the examination of the atomic structure of small-sized metallic objects

  • Published:
Inorganic Materials Aims and scope

Abstract

The present review details the results of studies that showcase the capacity of the molecular dynamics method to analyze the atomic structure of small-sized metallic objects: nanoparticles, thin films, and film heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dmitriev, A.A., Evteev, A.V., Ievlev, V.M., and Kosilov, A.T., Structural self-organization in a (crystal–monolayer film) metallic heterogeneous system with large dimensional discrepancy between the components, Dokl. Phys., 2004, vol. 49, p. 292.

    Article  CAS  Google Scholar 

  2. Sung, I.-H. and Kim, D.-E., Molecular dynamics simulation study of the nano-wear characteristics of alkanethiol self-assembled monolayers, Appl. Phys. A, 2005, vol. 81, pp. 109–114.

    Article  CAS  Google Scholar 

  3. Zhao, L., Duan, X.-M., Xue, X.-G., Li, M.-H., and Li, Z.-S., Self-assembled monolayers of oligosilane on the silicon (001) surface: molecular dynamics simulations, J. Mol. Model., 2011, vol. 17, no. 4, pp. 721–726.

    Article  CAS  Google Scholar 

  4. Kamiyama, H., Ohno, K., Maruyama, Y., Kawazoe, Y., Nishina, Y., and Shindo, K., Ab-initio molecular dynamics simulation of monolayer C60 thin film on silicon (100) surface, Z. Phys. D: At., Mol. Clusters, 1993, vol. 26, no. 1 suppl., pp. 291–293.

    Article  CAS  Google Scholar 

  5. Ehrlich, G. and Hudda, F.G., Atomic view of surface selfdiffusion: tungsten on tungsten, J. Chem. Phys., 1966, vol. 44, p. 1039.

    Article  CAS  Google Scholar 

  6. Bassett, D.W. and Webber, P.R., Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces, Surf. Sci., 1978, vol. 70, p. 520.

    Article  CAS  Google Scholar 

  7. Naumovets, A.G. and Vedula, Y.S., Surface diffusion of adsorbates, Surf. Sci. Rep., 1985, vol. 4, p. 365.

    Article  Google Scholar 

  8. Gomer, R., Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys., 1990, vol. 53, p. 917.

    Article  CAS  Google Scholar 

  9. Ehrlich, G., Diffusion of individual adatoms, Surf. Sci., 1994, vol. 299/300, p. 628.

    Google Scholar 

  10. Kellogg, G., Field ion microscope studies of singleatom surface diffusion and cluster nucleation on metal surfaces, Surf. Sci. Rep., 1994, vol. 21, p. 1.

    Article  CAS  Google Scholar 

  11. Blakely, J.M., Surface diffusion, Prog. Mater. Sci., 1963, vol. 10, p. 395.

    Article  CAS  Google Scholar 

  12. Tsong, T.T., Field-ion microscopic observations of indirect interaction between adatoms on metal surfaces, Phys. Rev. Lett., 1973, vol. 31, p. 1207.

    Article  CAS  Google Scholar 

  13. Lau, K.H. and Kohn, W., Indirect long-range oscillatory interaction between adsorbed atoms, Surf. Sci., 1978, vol. 75, p. 68.

    Article  Google Scholar 

  14. Braun, O.M. and Medvedev, V.K., Interactions between particles adsorbed on metal surfaces, Sov. Phys. Usp., 1989, vol. 32, p. 328.

    Article  Google Scholar 

  15. Einstein, T.L., Interactions between adsorbate particles, in Handbook of Surface Science, Unertl, W.N., Ed., Amsterdam: Elsevier, 1996, p. 577.

    Google Scholar 

  16. Naumovets, A.G., Two-dimensional phase transitions in alkali-metal adlayers, in The Chemical Physics of Solid Surfaces, King, D.A. and Woodruff, D.P., Eds., Amsterdam: Elsevier, 1994, p. 163.

    Google Scholar 

  17. Swartzentruber, B.S., Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy, Phys. Rev. Lett., 1996, vol. 76, p. 459.

    Article  CAS  Google Scholar 

  18. Feibelman, P.J., Diffusion path for an Al adatom on Al(001), Phys. Rev. Lett., 1990, vol. 65, p. 729.

    Article  CAS  Google Scholar 

  19. Brocks, G., Kelly, P.J., and Car, R., Binding and diffusion of a Si adatom on the Si(100) surface, Phys. Rev. Lett., 1991, vol. 66, p. 1729.

    Article  CAS  Google Scholar 

  20. Kellogg, G.L. and Feibelman, P.J., Surface self-diffusion on Pt(001) by an atomic exchange mechanism, Phys. Rev. Lett., 1990, vol. 64, p. 3143.

    Article  CAS  Google Scholar 

  21. Chen, C.L. and Tsong, T.T., Displacement distribution and atomic jump direction in diffusion of Ir atoms on the Ir(001), Phys. Rev. Lett., 1990, vol. 64, p. 3147.

    Article  CAS  Google Scholar 

  22. Wrigley, J.D. and Ehrlich, G., Surface diffusion by an atomic exchange mechanism, Phys. Rev. Lett., 1980, vol. 44, p. 661.

    Article  CAS  Google Scholar 

  23. Kellogg, G.L., Wright, A.F., and Daw, M.S., Surface diffusion and adatom-induced substrate relaxations of Pt, Pd, and Ni atoms on Pt(001), J. Vac. Sci. Technol., A, 1991, vol. 9, p. 1757.

    Article  CAS  Google Scholar 

  24. Yu, B.D. and Scheffler, M., Physical origin of exchange diffusion on fcc(100) metal surfaces, Phys. Rev. B, 1997, vol. 56, p. R15569.

    Article  CAS  Google Scholar 

  25. Evteev, A.V., Kosilov, A.T., and Solyanik, S.A., Atomic mechanisms and kinetics of self-diffusion on the Pd(001) surface, Phys. Solid State, 2004, vol. 46, p. 1781.

    Article  CAS  Google Scholar 

  26. Liu, C.L., Cohen, J.M., Adams, J.B., and Voter, A.F., EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt, Surf. Sci., 1991, vol. 253, p. 334.

    Article  CAS  Google Scholar 

  27. Shiang, K.D., Molecular dynamics simulation of adatom diffusion on metal surfaces, J. Chem. Phys., 1993, vol. 99, p. 9994.

    Article  CAS  Google Scholar 

  28. Kurpick, U., Self-diffusion on (100), (110), and (111) surfaces of Ni and Cu: a detailed study of prefactors and activation energies, Phys. Rev. B, 2001, vol. 64, p. 075418.

    Article  Google Scholar 

  29. McDowell, H.K. and Doll, J.D., Theoretical studies of surface diffusion: self-diffusion in the fcc(100) system, J. Chem. Phys., 1983, vol. 78, p. 3219.

    Article  CAS  Google Scholar 

  30. Stolze, P., Simulation of surface defects, J. Phys.: Condens. Matter, 1994, vol. 6, p. 9495.

    CAS  Google Scholar 

  31. Chang, C.M., Wei, C.M., and Chen, S.P., Self-diffusion of small clusters on fcc metal (111) surfaces, Phys. Rev. Lett., 2000, vol. 85, p. 1044.

    Article  CAS  Google Scholar 

  32. Li, Y. and DePristo, A.E., Predicted growth mode for metal homoepitaxy on the fcc (111) surface, Surf. Sci., 1996, vol. 351, p. 189.

    Article  CAS  Google Scholar 

  33. Bulou, H. and Massobrio, C., Mechanisms of exchange diffusion on fcc(111) transition metal surfaces, Phys. Rev. B, 2005, vol. 72, p. 205427.

    Article  Google Scholar 

  34. Dmitriev, A.A., Evteev, A.V., Zhilyakov, D.G., Kosilov, A.T., and Kulikov, E.V., Modeling the structural and substructural transformations in the process of crystallization of an amorphous Ni film on a Pd (001) substrate, Vestn. VGTU, Ser. Materialoved., 2002, no. 1.12, p. 74.

    Google Scholar 

  35. Dmitriev, A.A., Evteev, A.V., Ievlev, V.M., and Kosilov, A.T., Molecular-dynamics simulation of the oriented crystallization of a Ni amorphous film on a singular Pd(001) surface, Phys. Met. Metallogr., 2005, vol. 100, no. 2, p. 129.

    Google Scholar 

  36. Zhilyakov, D.G., Structural and substructural transformations in the process of oriented crystallization of amorphous films in the Cu/Ni, Cu/Pd, and Ni/Pd heterosystems, Cand. Sci. (Phys.–Math.) Dissertation, Voronezh, 2005.

    Google Scholar 

  37. Muller, B., Nedelmann, L., Fischer, B., et al., Strain relief in metal heteroepitaxy on face centered cubic (100): Cu/Ni(100), J. Vac. Sci. Technol., A, 1996, vol. 14, pp. 1878–1881.

    Article  Google Scholar 

  38. Berezin, M.V., Dmitriev, A.A., Evteev, A.V., and Kosilov, A.T., Molecular-dynamics simulation of the oriented crystallization of an Ag/Ni(001) amorphous film, Vestn. VGTU, Ser. Materialoved., 2005, no. 1.17, pp. 50–52.

    Google Scholar 

  39. Berezin, M.V., Laws of oriented crystallization of film heterophase systems based on Ag and Ni, Cand. Sci. (Phys.–Math.) Dissertation, Voronezh, 2007.

    Google Scholar 

  40. Berezin, M.V. and Dmitriev, A.A., Molecular-dynamics simulation of the oriented crystallization of an Ag/Ni(111) amorphous film, Vestn. VGTU, 2006, vol. 2, no. 11, pp. 50–52.

    Google Scholar 

  41. Prizhimov, A.S. and Evteev, A.V., Structure-morphological transformations in the process of epitaxial growth of Cu and Ni films on (001)Ag, Kinetika i mekhanizm kristallizatsii. Kristallizatsiya i materialy novogo pokoleniya: VII Mezhdunarodnaya nauchnaya konferentsiya i II Vserossiiskaya shkola molodykh uchenykh po kinetike i mekhanizmu kristallizatsii (VII Int. Sci. Conf. and IIRussian School for Young Scientists on the Kinetics and Mechanism of Crystallization), Ivanovo, 2012, pp. 49–50.

    Google Scholar 

  42. Hara, K., Ikeda, M., and Ohtsuki, O., Moleculardynamics simulations for molecular-beam epitaxy: overlayer growth pattern in two-component Lennard–Jones systems, Phys. Rev. B, 1989, vol. 39, pp. 9476–9485.

    Article  Google Scholar 

  43. Schneider, M., Rahman, A., and Schuller, I.K., Role of relaxation in epitaxial growth: a molecular-dynamics study, Phys. Rev. Lett., 1985, vol. 55, pp. 604–606.

    Article  CAS  Google Scholar 

  44. Schneider, M., Rahman, A., and Schuller, I.K., Vapor-phase growth of amorphous materials: a molecular-dynamics study, Phys. Rev. B, 1986, vol. 34, pp. 1802–1805.

    Article  CAS  Google Scholar 

  45. Paik, S.M. and Das Sarma, S., Dynamical simulation of molecular-beam epitaxial growth of a model crystal, Phys. Rev. B, 1989, vol. 39, pp. 1224–1228.

    Article  Google Scholar 

  46. Aubin, E. and Lewis, L.J., Growth of metallic superlattices by sequential deposition of atoms, Phys. Rev. B, 1993, vol. 47, pp. 6780–6783.

    Article  CAS  Google Scholar 

  47. Kelchner, C.L. and DePristo, A.E., Molecular dynamics simulations of multilayer homoepitaxial thin film growth in the diffusion-limited regime, Surf. Sci., 1997, vol. 393, nos. 1–3, pp. 72–84.

    Article  CAS  Google Scholar 

  48. Daw, M.S. and Baskes, M.I., Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 1984, vol. 29, no. 12, pp. 6443–6453.

    Article  CAS  Google Scholar 

  49. Luedtke, W.D. and Landman, U., Metal-on-metal thin-film growth: Au/Ni(001) and Ni/Au(001), Phys. Rev. B, 1991, vol. 44, pp. 5970–5972.

    Article  CAS  Google Scholar 

  50. Gilmore, C.M. and Sprague, J.A., Molecular-dynamics simulation of the energetic deposition of Ag thin films, Phys. Rev. B, 1991, vol. 44, pp. 8950–8957.

    Article  CAS  Google Scholar 

  51. Yang, L. and Rahman, T.S., Structure and dynamics of an Ag overlayer on Ni(100): comparison of embedded atom and pair potential results, Surf. Sci., 1992, vol. 278, pp. 407–413.

    Article  CAS  Google Scholar 

  52. Luedtke, W.D. and Landman, U., Stability and collapse of metallic structures on surfaces, Phys. Rev. Lett., 1994, vol. 73, pp. 569–572.

    Article  CAS  Google Scholar 

  53. Guan, P., Mckenzie, D.R., and Pailthorpe, B.A., MD simulations of Ag film growth using the Lennard-Jones potential, J. Phys.: Condens. Matter, 1996, vol. 8, pp. 8753–8762.

    CAS  Google Scholar 

  54. Halicioglu, T. and Pound, G.M., Calculation of potential energy parameters form crystalline state properties, Phys. Status Solidi A, 1975, vol. 30, no. 2, pp. 619–623.

    Article  CAS  Google Scholar 

  55. Qing-Yu, Z., Zheng-Ying, P., and Jia-Yong, T., Molecular dynamics simulation of energetic atom depositions of Au/Au(100) film, Acta Phys. Sin. (Overseas Ed.), 1999, vol. 8, no. 4, pp. 296–305.

    Article  Google Scholar 

  56. Yue, Y., Ho, Y.K., Pan, Z.Y., et al., Enhanced atomic mobility in pulsed laser deposition of Cu films, Phys. Lett. A, 1997, vol. 235, no. 3, pp. 267–270.

    Article  CAS  Google Scholar 

  57. Gilmore, C.M. and Sprague, J.A., Molecular dynamics simulation of defect formation during energetic Cu deposition, Thin Solid Films, 2002, vol. 419, nos. 1/2, pp. 18–26.

    Article  CAS  Google Scholar 

  58. Evteev, A.V., Ievlev, V.M., Kosilov, A.T., and Prizhimov, A.S., Orientation dependence of the heteroepitaxial growth of Ni films on Pd, Phys. Met. Metallogr., 2006, vol. 101, no. 6, p. 577.

    Google Scholar 

  59. Evteev, A.V., Ievlev, V.M., Kosilov, A.T., and Prizhimov, A.S., Structural and substructural transformations in the process of growth of Ni films on singular surfaces of a Pd crystal, Vestn. VGTU, Ser. Materialoved., 2005, no. 1.17, pp. 31–36.

    Google Scholar 

  60. Petukhov, M., Rizzi, G.A., Sambi, M., and Granozzi, G., An XPD and LEED study of highly strained ultrathin Ni films on Pd(100), Appl. Surf. Sci., 2003, vols. 212/213, pp. 264–266.

    Google Scholar 

  61. Prizhimov, A.S., Ievlev, V.M., and Evteev, A.V., Specifics of matching at the interphase boundary in the process of condensation of Cu on a (001)Ag surface (molecular dynamics), Kondens. Sredy Mezhfaznye Granitsy, 2012, vol. 14, no. 2, pp. 229–232.

    CAS  Google Scholar 

  62. Trushin, O.S., Kokko, K., and Salo, P.T., Film–substrate interface mixing in the energetic deposition of Ag on Cu(001), Surf. Sci, 1999, vol. 442, no. 3, pp. 420–430.

    Article  CAS  Google Scholar 

  63. Su, C., Ho, H.Y., Shern, C.S., and Chen, R.H., Initial growth and coverage determination of Ni ultrathin films on Pt(111), Thin Solid Films, 2003, vol. 425, p. 139.

    Article  CAS  Google Scholar 

  64. Cullen, W.G. and First, P.N., Island shapes and intermixing for submonolayer nickel on Au(111), Surf. Sci., 1999, vol. 420, p. 53.

    Article  CAS  Google Scholar 

  65. Graham, G.W., Schmitz, P.J., and Thiel, P.A., Growth of Rh, Pd, and Pt films on Cu(100), Phys. Rev. B, 1990, vol. 41, p. 3353.

    Article  CAS  Google Scholar 

  66. Prigge, S., Roux, H., and Bauer, E., Pd layers on a W(100) surface, Surf. Sci., 1981, vol. 107, p. 101.

    Article  CAS  Google Scholar 

  67. Ji, X.Z., Tian, Y., and Jona, F., Tetragonal states of palladium II. Experiment, Phys. Rev. B, 2002, vol. 65, p. 155404.

    Article  Google Scholar 

  68. Klaver, T.P.C. and Thijsse, B.J., Molecular dynamics simulations of Cu/Ta and Ta/Cu thin film growth, J. Comput.Aided Mater. Des., 2003, vol. 10, no. 2, pp. 61–74.

    Article  CAS  Google Scholar 

  69. Müller, C.M., Parviainen, S., Djurabekova, F., Nordlund, K., and Spolenak, R., The as-deposited structure of co-sputtered Cu–Ta alloys, studied by X-ray diffraction and molecular dynamics simulations, Acta Mater., 2015, vol. 82, pp. 51–63.

    Article  Google Scholar 

  70. Ievlev, V.M., Prizhimov, A.S., and Evteev, A.V., Molecular dynamics simulation of the heteroepitaxial growth of Cu–Pd solid solution films on Pd(001), Phys. Solid State, 2013, vol. 55, p. 213.

    Article  Google Scholar 

  71. Prizhimov, A.S. and Lavrova, Ya.A., Epitaxial growth of films of solid solutions of the Ni–Al system (molecular dynamics), VIII Mezhdunarodnaya nauchnaya konferentsiya “Kinetika i mekhanizm kristallizatsii. Kristallizatsiya kak forma samoorganizatsii veshchestva” (VIII Int. Sci. Conf. "Kinetics and Mechanism of Crystallization. Crystallization as a Form of SelfOrganization of Matter”), Ivanovo, 2014, pp. 97–98.

    Google Scholar 

  72. Zhang, J., Liu, C., Shu, Y., and Fan, J., Growth and properties of Cu thin film deposited on Si(001) substrate: a molecular dynamics study, Appl. Surf. Sci., 2012, vol. 261, pp. 690–696.

    Article  CAS  Google Scholar 

  73. Echigoya, J., Enoki, H., Satoh, T., Waki, T., Ohmi, T., Otsuki, M., and Shibata, T., Thin film reaction and interface structure of Cu on Si, Appl. Surf. Sci., 1992, vol. 56, pp. 463–468.

    Article  Google Scholar 

  74. Chen, L.J., Liu, C.S., and Lai, J.B., Interfacial reactions of ultrahigh-vacuum-deposited Cu thin films on Si, Ge and on epitaxial Si–Ge layers on Si and Ge, Mater. Sci. Semicond. Process., 2004, vol. 7, pp. 143–156.

    Article  CAS  Google Scholar 

  75. Zhang, J., Liu, C., and Fan, J., Comparison of Cu thin films deposited on Si substrates with different surfaces and temperatures, Appl. Surf. Sci., 2013, vol. 276, pp. 417–423.

    Article  CAS  Google Scholar 

  76. Cheng, Y.Y. and Lee, C.C., Simulation of molecular dynamics associated with surface roughness on an Al thin film, Surf. Coat. Technol., 2008, vol. 203, pp. 918–921.

    Article  CAS  Google Scholar 

  77. Gilmore, C.M. and Sprague, J.A., Molecular dynamics simulation of thin film growth with energetic atoms, NATO Sci. Ser., II, 2002, vol. 55, pp. 283–307.

    CAS  Google Scholar 

  78. Hong, Z.-H., Hwang, S.-F., and Fang, T.-H., Critical conditions of epitaxy, mixing and sputtering growth on Cu(100) surface using molecular dynamics, Comput. Mater. Sci., 2007, vol. 41, pp. 70–77.

    Article  CAS  Google Scholar 

  79. Inoue, S. and Matsumura, Y., Molecular dynamics simulation of physical vapor deposition of metals onto a vertically aligned single-walled carbon nanotube surface, Carbon, 2008, vol. 46, pp. 2046–2052.

    Article  CAS  Google Scholar 

  80. Xie, L., Brault, P., Coutanceau, C., Caillard, A., Berndt, J., and Neyts, E., Efficient amorphous platinum catalyst cluster growth on porous carbon: a combined molecular dynamics and experimental study, Appl. Cat. B, 2015, vol. 62, pp. 21–26.

    Article  Google Scholar 

  81. Hernandez, N.C. and Fernandez Sanz, J., Molecular dynamics simulations of Pd deposition on the surface, J. Phys. Chem. B, 2001, vol. 105, pp. 12111–12117.

    Article  CAS  Google Scholar 

  82. Hansen, K.J., Worren, T., Stempel, S., Laegsgaard, E., Bäumer, M., Freund, H.-J., Besenbacher, F., and Stensgaard, I., Palladium nanocrystals on Al2O3: structure and adhesion energy, Phys. Rev. Lett., 1999, vol. 83, p. 4120.

    Article  CAS  Google Scholar 

  83. Mazzone, A.M., Molecular dynamics simulations of sequential deposition of metallic superlattices, Appl. Phys. A, 1996, vol. 63, no. 3, pp. 217–221.

    Article  Google Scholar 

  84. Zhang, Q., Lai, W.S., Yang, G.W., and Liu, B.X., Solid-state interfacial reaction and asymmetric growth of amorphous interlayers in Ni/Nb multilayers. Molecular-dynamics simulation together with experiments, Eur. Phys. J. B, 2000, vol. 16, no. 2, pp. 223–231.

    Article  CAS  Google Scholar 

  85. Dolgusheva, E.B. and Trubitsyn, V.Yu., Molecular dynamics investigation of the structural stability of body-centered cubic zirconium nanofilms, Phys. Solid State, 2012, vol. 54, no. 8, pp. 1652–1662.

    Article  CAS  Google Scholar 

  86. Fang, M., Kelty, S.P., and He, X., Molecular dynamics simulations of lanthanum oxide surfaces, Ionics, 2014, vol. 20, no. 8, pp. 1111–1116.

    Article  CAS  Google Scholar 

  87. Lee, S.-H., Lee, C.-S., Lee, S.-C., Lee, K.-H., and Lee. K.-R., Structural properties of amorphous carbon films by molecular dynamics simulation, Surf. Coat. Technol., 2004, vols. 177/178, pp. 812–817.

    Google Scholar 

  88. Zhang, L. and Feng, J.Y., Molecular-dynamics simulation of germanium film growth by cluster deposition, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, vol. 234, no. 4, pp. 487–493.

    Article  CAS  Google Scholar 

  89. Liu, Y.L., Babar Shahzad, M., and Qi, Y., Growth of a-axis ZnO films on the defective substrate with different O/Zn ratios: a reactive force field based molecular dynamics study, J. Alloys Compd., 2015, vol. 628, pp. 317–324.

    Article  CAS  Google Scholar 

  90. Gilmer, G.H., Molecular dynamics simulations of molecular beam epitaxy, in Computer Aided Innovation of New Materials, Amsterdam: Elsevier, 1991, pp. 687–692.

    Chapter  Google Scholar 

  91. Georgieva, V., Voter, A.F., and Bogaerts, A., Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg–Al–O thin films, Cryst. Growth Des., 2011, vol. 11, no. 6, pp. 2553–2558.

    Article  CAS  Google Scholar 

  92. Haberland, H., Insepov, Z., and Moseler, M., Molecular dynamics simulation of thin film formation by energetic cluster impact (ECI), Z. Phys. D, 1993, vol. 26, pp. 229–231.

    Article  CAS  Google Scholar 

  93. Haberland, H., Insepov, Z., and Moseler, M., Molecular-dynamics simulation of thin-film growth by energetic cluster impact, Phys. Rev. B, 1995, vol. 51, p. 11061.

    Article  CAS  Google Scholar 

  94. Evteev, A.V., Ievlev, V.M., Kosilov, A.T., and Prizhimov, A.S., Relaxed atomic structure of the interphase boundary in a “hemispherical nanoparticle–crystal” heterogeneous system, Phys. Solid State, 2007, vol. 49, pp. 785–790.

    Article  CAS  Google Scholar 

  95. Evteev, A.V., Ievlev, V.M., Kosilov, A.T., and Prizhimov, A.S., Regularity of self-organization of the atomic structure of the interphase boundary in a crystal–nanoparticle heterosystem, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2008, vol. 2, no. 1, pp. 127–132.

    Google Scholar 

  96. Liao, M.-L., Weng, M.-H., Ju, S.-P., and Chiang, H.-J., Molecular dynamics simulation on the nanoindentation behavior of a copper bilayered thin film, Chin. J. Catal., 2008, vol. 29, no. 11, pp. 1122–1126.

    Article  CAS  Google Scholar 

  97. Cao, Y., Zhang, J., Liang, Y., Yu, F., and Sun, T., Mechanical and tribological properties of Ni/Al multilayers—A molecular dynamics study, Appl. Surf. Sci., 2010, vol. 257, no. 3, pp. 847–851.

    Article  CAS  Google Scholar 

  98. Fang, T.-H. and Wu, J.-H., Molecular dynamics simulations on nanoindentation mechanisms of multilayered films, Comput. Mater. Sci., 2008, vol. 43, pp. 785–790.

    Article  CAS  Google Scholar 

  99. Roncando, S.A., Parra, E.R., Arias Mateus, D.F., Gómez Hermida, M.M., and Riaño Rojas, J.H., Molecular dynamics simulations of nanoindentation in Cr, Ni, and Ni/Cr bilayer films using a hard spherical potential, Rev. Fac. Ing., Univ. Antioquia, 2013, no. 68, pp. 88–94.

    Google Scholar 

  100. Cao, Y., Zhang, J., Sun, T., Yan, Y., and Yu, F., Atomistic study of deposition process of Al thin film on Cu substrate, Appl. Surf. Sci., 2010, vol. 256, no. 20, pp. 5993–5997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Prizhimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prizhimov, A.S., Solyanik, S.A. Molecular dynamics in the examination of the atomic structure of small-sized metallic objects. Inorg Mater 51, 1316–1328 (2015). https://doi.org/10.1134/S0020168515130051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515130051

Keywords

Navigation