Skip to main content
Log in

Opal-matrix nanocomposites containing metallic nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

A method has been proposed for the fabrication of three-dimensional photonic crystals based on ordered opal matrices (OMs), with pores containing iron group metal (M = Ni, Co, Fe) nanoparticles. The core of the method is the reduction of salts and oxides of these metals with supercritical isopropanol. The phase composition of OM/M composites depends on the composition of the starting salts (nitrates or chlorides): the use of ferric chloride leads to the formation of nanoparticles of solid solutions based on nickel metal, α-cobalt, or β-cobalt (Ni-Fe and Co-Fe systems) in opal pores; with the corresponding nitrates, we obtain OM/NiCo (cubic solid solution), OM/Fe, OM/Ni3Fe, OM/NiFe, OM/CoFe, and OM/NiCoFe nanocomposites. We have measured broadband reflection spectra of the (111) surface of the photonic crystals using a fiber-optic technique for taking reflection spectra. The intensity peak in the reflection (band gap) spectrum of the OM/M (M = Fe, Co, Ni) nanocomposites is shown to be shifted to longer wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaponenko, S.V., Kapitonov, A.M., Bogomolov, V.N., Prokofiev, A.V., Eychmuller, A., and Rogach, A.L., Electrons and photons in mesoscopic structures: quantum dots in a photonic crystal, JETP Lett., 1998, vol. 68, no. 2, pp. 131–135.

    Article  CAS  Google Scholar 

  2. Golubev, V.G., Kurdyukov, D.A., and Pevtsov, A.B., Three-dimensional photonic crystals based on opalsemiconductor nanocomposites, Fundamental’nye problemy optiki. Trudy konferentsii (Proc. Conf. Fundamental Issues in Optics, St. Petersburg, 2002), St. Petersburg: SPbGITMO, 2002, p. 90.

    Google Scholar 

  3. Romanov S.G. Light propagation in nonuniform colloidal photonic crystals, Extended Abstract of Doctoral (Phys.-Math.) Dissertation, St. Petersburg: Ioffe Physicotechnical Inst., Russ. Acad. Sci., 2013.

    Google Scholar 

  4. Baryshev, A.V., Kaplyanskii, A.A., Kosobukin, V.A., Limonov, M.F., and Skvortsov, A.P., Spectroscopy of the photonic stop band in synthetic opals, Phys. Solid State, 2004, vol. 46, no. 7, pp. 1331–1339.

    Article  CAS  Google Scholar 

  5. Gorelik, V.S., Optics of globular photonic crystals, Laser Phys., 2008, vol. 18, no. 12, pp. 1479–1500.

    Article  CAS  Google Scholar 

  6. Avakyants, L.P., Gorelik, V.S., Zlobina, L.I., Mel’nik, N.N., Sverbil’, P.P., Fadyushin, A.B., and Chervyakov, A.V., Raman scattering study of NaNO2-infiltrated opal photonic crystals, Inorg. Mater., 2006, vol. 41, no. 6, pp. 635–640.

    Article  Google Scholar 

  7. Gorelik, V.S., Optical and dielectric properties of nanostructured photonic crystals loaded by ferroelectrics and metals, Phys. Solid State, 2009, vol. 51, no. 7, pp. 1321–1327.

    Article  CAS  Google Scholar 

  8. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Magnetic nanoparticles: preparation, structure, and properties, Usp. Khim., 2005, vol. 74, no. 6, pp. 539–574.

    Article  Google Scholar 

  9. Han, Y.C., Cha, H.G., Kim, C.W., Kim, Y.H., and Kang, Y.S., Synthesis of highly magnetized iron nanoparticles by a solventless thermal decomposition method, J. Phys. Chem. C, 2007, vol. 111, no. 17, pp. 6275–6280.

    Article  CAS  Google Scholar 

  10. Bao, N., Shen, L., Wang, Y., Padhan, P., and Gupta, A., A facile thermolysis route to monodisperse ferrite nanocrystals, J. Am. Chem. Soc., 2007, vol. 129, no. 41, pp. 12 374–12 375.

    Article  CAS  Google Scholar 

  11. Sapoletova, N.A., Napol’skii, K.S., Gorozhankin, D.F., Eliseev, A.A., and Mishina, E.D., Electrochemical engineering of photonic crystal materials, Opalopodobnye struktury: Sbornik trudov vserossiiskoi konferentsii (Opal-Like Structures: Proc. All-Russia Conf.), St. Petersburg, 2010, pp. 111–113.

    Google Scholar 

  12. Zakharov, Yu.A., Popova, A.N., Pugachev, V.M., and Dodonov, V.G., Some properties of iron-cobalt and iron-nickel nanopowders, Polzunov. Vestn., 2008, no. 3, pp. 79–83.

    Google Scholar 

  13. Sviridov, V.V., Khimicheskoe osazhdenie metallov iz vodnykh rastvorov (Chemical Deposition of Metals from Aqueous Solutions), Minsk: Universitetskoe Izd., 1987.

    Google Scholar 

  14. Pileni, M.P., Reverse micelles: a microreactor, J. Phys. Chem., 1993, vol. 97, no. 27, pp. 9661–9668.

    Article  Google Scholar 

  15. Ban, I., Drofenik, M., and Makovec, D., The synthesis of iron-nickel alloy nanoparticles using a reverse micelle technique, J. Magn. Magn. Mater., 2006, vol. 307, no. 2, pp. 250–256.

    Article  CAS  Google Scholar 

  16. Liu, X., Chun, C.M., Aksay, I.A., and Shih, W.H., Synthesis of mesostructured nickel oxide with silica, Ind. Eng. Chem. Res., 2000, vol. 39, no. 3, pp. 684–692.

    Article  CAS  Google Scholar 

  17. Grigor’ev, S.V., Chumakov, A.P., Syromyatnikov, A.V., Grigor’eva, N.A., Okorokov, A.I., Napol’skii, K.S., Roslyakov, I.V., Eliseev, A.A., Lukashin, A.V., and Ekkerlebe Khyu, Magnetic properties of a two-dimensional spatially ordered array of nickel nanowires, Phys. Solid State, 2010, vol. 52, no. 5, pp. 1080–1086.

    Article  Google Scholar 

  18. Gao, Y., Zingaro, R.A., and Gao, M.Z., A silica immobilized cobalt complex: absorption of dioxigen and the redox ability in aqueous solution, Polyhedron, 2004, vol. 23, no. 1, pp. 59–62.

    Article  CAS  Google Scholar 

  19. Napol’skii, K.S., Kolesnik, I.V., Eliseev, A.A., Lukashin, A.V., Vertegel, A.A., and Tret’yakov, Yu.D., Synthesis of filamentary iron nanoparticles in a mesoporous silica matrix, Dokl. Chem., 2002, vol. 386, nos. 1–3, pp. 242–245.

    Article  Google Scholar 

  20. Zakharov, Yu.A., Popova, A.N., and Pugachev, V.M., Phase composition of iron-cobalt nanopowders, Polzunov. Vestn., 2009, no. 3, pp. 60–63.

    Google Scholar 

  21. Chaubey, G.S., Barcena, C., Poudyal, N., Rong, C., Gao, J., Sun, S., and Liu, J.P., Synthesis and stabilization of FeCo nanoparticles, J. Am. Chem. Soc., 2007, vol. 129, no. 41, pp. 7214–7215.

    Article  CAS  Google Scholar 

  22. Liao, Q., Tannenbaum, R., and Wang, Z.L., Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction, J. Phys. Chem. B, 2006, vol. 110, no. 29, pp. 14 262–14 265.

    Article  CAS  Google Scholar 

  23. Peng, S., Wang, C., Xie, J., and Sun, S., Synthesis and stabilization of monodisperse Fe nanoparticles, J. Am. Chem. Soc., 2006, vol. 128, no. 33, pp. 10 676–10 677.

    Article  CAS  Google Scholar 

  24. Cozzoli, P.D., Snoeck, E., Garcia, M.A., Giannini, C., Guagliardi, A., Cervellino, A., Gozzo, F., Hernando, A., Achterhold, K., Ciobanu, N., Parak, F.G., Cingolani, R., and Manna, L., Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals, Nanoletters, 2006, vol. 6, no. 9, pp. 1966–1972.

    Article  CAS  Google Scholar 

  25. Desvaux, C., Amiens, C., Fejes, P., Renaud, P., Respaud, M., Lecante, P., Snoeck, E., and Chaudret, B., Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles, Nat. Mater., 2005, vol. 4, no. 10, pp. 750–753.

    Article  CAS  Google Scholar 

  26. Yamauchi, T., Tsukahara, Y., Yamada, K., Sakata, T., and Wada, Y., Nucleation and growth of magnetic NiCo (core-shell) nanoparticles in a one-pot reaction under microwave irradiation, Chem. Mater., 2011, vol. 23, no. 1, pp. 74–84.

    Article  Google Scholar 

  27. Bulygina, E.V., Marchuk, V.V., Panfilov, Yu.V., Oya, D.R., and Shakhnov, V.Ya., Nanorazmernye struktury: klassifikatsiya, formirovanie i issledovanie (Nanostructures: Classification, Formation, and Characterization), Moscow: SAINS-PRESS, 2006.

    Google Scholar 

  28. Bozhko, S.I., Naumenko, I.G., Samorov, E.N., Masalov, V.M., Emel’chenko, G.A., Ionov, A.M., and Fokin, D.A., Formation of two-dimensional ordered magnetic nanolattices in opal structures, JETP Lett., 2004, vol. 80, no. 7, pp. 500–502.

    Article  CAS  Google Scholar 

  29. Gorelik, V.C., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Seleznev, L.V., Sinitsyn, D.V., Chanieva, F.A., and Sharipov, A.F., Opal-based nanocomposites produced by laser ablation using femtosecond laser pulses, Kratk. Soobshch. Fiz., 2011, no. 11, pp. 20–29.

    Google Scholar 

  30. Tret’yakov, Yu.D., Lukashin, A.V., and Eliseev, A.A., Synthesis of functional nanocomposites based on solidstate nanoreactors, Usp. Khim., 2004, vol. 73, no. 9, pp. 974–998.

    Google Scholar 

  31. Yu, X., Lee, Yu.-J., Furstenberg, R., White, J.O., and Braun, P.V., Filling fraction dependent properties of inverse opal metallic photonic crystals, Adv. Mater., 2007, vol. 19, no. 13, pp. 1689–1692.

    Article  Google Scholar 

  32. Kargin, Yu.F., Ivicheva, S.N., Buslaeva, E.Yu., Kuvshinova, T.B., Volodin, V.D., and Yurkov, G.Yu., Preparation of bismuth nanoparticles in opal matrices through reduction of bismuth compounds with supercritical isopropanol, Inorg. Mater., 2006, vol. 42, no. 5, pp. 487–490.

    Article  CAS  Google Scholar 

  33. Kargin, Yu.F., Ivicheva, S.N., Buslaeva, E.Yu., Yurkov, G.Yu., and Volodin, V.D., Reduction of various metal salts in opal matrices with supercritical isopropanol, Inorg. Mater., 2006, vol. 42, no. 9, pp. 966–970.

    Article  CAS  Google Scholar 

  34. Ivicheva, S.N. and Kargin, Yu.F., Ordered opal-matrix nanocomposites containing iron group metal nanoparticles, Institut metallurgii i materialovedeniya im. A.A.Baikova RAN — 75 let. Sbornik nauchnyk trudov (Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences-75 Years: A Collection of Scientific Papers), Solntsev, K.A., Ed., Moscow: Nauka, 2013, pp. 743–761.

    Google Scholar 

  35. Ivicheva, S.N., Kargin, Yu.F., Ashmarin, A.A., Shvorneva, L.I., and Ivanov, V.K., Nanocomposites based on opal matrices and iron subgroup metal nanoparticles, Russ. J. Inorg. Chem., 2012, vol. 57, no. 11, pp. 1419–1427.

    Article  CAS  Google Scholar 

  36. Gorelik, V.S., Zlobina, L.I., Troitskii, O.A., Chanieva, R.I., Emission spectra of silver-infiltrated opal photonic crystals under excitation through optical fibers, Inorg. Mater., 2009, vol. 45, no. 7, pp. 785–790.

    Article  CAS  Google Scholar 

  37. Voinov, Yu.P., Gorelik, V.S., Zlobina, L.I., and Filatov, V.V., Reflectivity spectra of gold- and silver-infiltrated opals, Inorg. Mater., 2009, vol. 45, no. 10, pp. 1133–1138.

    Article  CAS  Google Scholar 

  38. Ivicheva, S.N., Kargin, Yu.F., Shvorneva, L.I., Kutsev, S.V., and Yurkov, G.Yu., Ni, Co, Cu, Ni-Co, and Ni-Cu nanoparticles in opal matrices and mesoporous silica gels, Inorg. Mater., 2012, vol. 48, no. 3, pp. 289–297.

    Article  CAS  Google Scholar 

  39. PCPDFWIN v. 2.4, JCPDS-International Centre for Diffraction Data, 2003.

  40. Ivicheva, S.N., Kargin, Yu.F., Ovchenkov, E.A., Koksharov, Yu.A., and Yurkov, G.Yu., Properties of threedimensional composites based on opal matrices and magnetic nanoparticles, Phys. Solid State, 2011, vol. 53, no. 6, pp. 1114–1120.

    Article  CAS  Google Scholar 

  41. Ivicheva, S.N., Kargin, Yu.F., Ovchenkov, E.A., and Koksharov, Y.A., 3D composites based on opal matrix and heterometallic nanoparticles, 12th China-Russia Symp. on Advanced Materials and Technologies, part I: Advanced Metals, Ceramics and Composites, Kunming: Yunnan, 2013, pp. 26–30.

    Google Scholar 

  42. Yariv, A. and Yeh, P., Optical Waves in Crystals: Propagation and Control of Laser Radiation, Hoboken: Wiley, 2003.

    Google Scholar 

  43. Malitson, I.H., Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am., 1965, vol. 55, no. 10, pp. 1205–1208.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Kargin.

Additional information

Original Russian Text © S.N. Ivicheva, Yu.F. Kargin, V.S. Gorelik, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 8, pp. 914–922.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivicheva, S.N., Kargin, Y.F. & Gorelik, V.S. Opal-matrix nanocomposites containing metallic nanoparticles. Inorg Mater 51, 840–847 (2015). https://doi.org/10.1134/S0020168515070080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515070080

Keywords

Navigation