Skip to main content
Log in

Photocatalytic Properties of Porous Films Based on α-Fe2O3 Hollow Microspheres

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied photoelectrochemical and photocatalytic properties of porous materials based on hollow α-Fe2O3 microspheres, characterized by the presence of dangling magnetic Fe–O–Fe bonds due to an increased oxygen vacancy concentration on the wall/closed pore interface. Using such powder and firing slips at an isothermal holding temperature of 400°C, we obtained two series of thin-film samples on glass with a conductive layer from suspensions of two compositions: aqueous Fe(NO3)3 solution + hollow α-Fe2O3 microspheres (series 1) and aqueous Fe(NO3)3 solution + polyethylene glycol + hollow α-Fe2O3 microspheres (series 2). The films of series 2 were shown to have a structure with spatially separated particles differing in size: α-Fe2O3 nanoparticles and hollow α-Fe2O3 microspheres. The films of series 1 consisted predominantly of hollow microspheres connected by “necks” formed during heat treatment. The thickness of the films of series 2 was of order 2 μm and that of the films of series 1 was of order 4 μm. The structural distinctions between the films of the two series had a significant effect on the optical properties of the material. In the wavelength range 350–1500 nm, the absorption coefficient of the films of series 2 (3.50 × 105 m–1) was about twice that of the films of series 1 (1.75 × 105 m–1). Photoelectrochemical characterization in an aqueous 0.1 M KOH solution showed that the onset potential for the anodic reaction was 0.87 V vs. Ag/AgCl in the case of the films of series 2 and 0.97 V vs. Ag/AgCl in the case of series 1. The films of both series showed an unusual increase in current density during prolonged illumination at a potential of 1 V vs. Ag/AgCl, due to Fe(IV) formation on the photoanode surface. Photocatalytic properties of the materials were assessed from the rate of methylene blue degradation. The reaction rate constant (k) was determined to be 0.015 and 0.018 min–1 for the films of series 1 and 2, respectively, whereas the k of the photocatalyst-free reaction was 2.8 × 10–4 min–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Wang, Y., Torres, J.A., Shviro, M., Carmo, M., He, T., and Ribeiro, C., Photocatalytic materials applications for sustainable agriculture, Prog. Mater. Sci., 2022, vol. 130, p. 100965. https://doi.org/10.1016/j.pmatsci.2022.100965

    Article  CAS  Google Scholar 

  2. Kiselev, V.M., Evstrop’ev, S.K., and Starodubtsev, A.M., Photocatalytic degradation and sorption of methylene blue on the surface of metal oxides in aqueous solutions of the dye, Opt. Spectrosc., 2017, vol. 123, no. 5, pp. 909–815. https://doi.org/10.1134/S0030400X17090168

    Article  Google Scholar 

  3. Mikhailov, D.A., Lelet, M.I., Fukina, D.G., and Lelet, Yu.N., Photocatalytic properties of the MgHPO4· 3H2O and MgKPO4·6H2O phosphates, Inorg. Mater., 2022, vol. 58, no. 6, pp. 620–629. https://doi.org/10.1134/S0020168522060061

    Article  CAS  Google Scholar 

  4. Cheng, X.-M., Zhao, J., and Sun, W.-Y., Facet-engineering of materials for photocatalytic application: status and future prospects, EnergyChem, 2022, vol. 4, no. 5, p. 100084. https://doi.org/10.1016/j.enchem.2022.100084

    Article  CAS  Google Scholar 

  5. Belikov, M.L. and Safaryan, S.A., Adsorptive and photocatalytic properties of molybdenum-modified titanium dioxide, Inorg. Mater., 2022, vol. 58, no. 7, pp. 715–722. https://doi.org/10.1134/S0020168522070032

    Article  CAS  Google Scholar 

  6. Bie, Ch., Wang, L., and Yu, J., Challenges for photocatalytic overall water splitting, Chem, 2022, vol. 8, no. 6, pp. 1567–1574. https://doi.org/10.1016/j.chempr.2022.04.013

    Article  CAS  Google Scholar 

  7. Wang, Q., Tian, S., and Ning, P., Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene, Ind. Eng. Chem. Res., 2014, vol. 53, no. 2, pp. 643–649. https://doi.org/10.1021/ie403402q

    Article  CAS  Google Scholar 

  8. Ameta, S.C. and Ameta, R., Advanced Oxidation Processes for Waste Water Treatment, London: Academic, 2018.

    Google Scholar 

  9. Gopinath, M. and Marimuthu, R., A review on solar energy-based indirect water-splitting methods for hydrogen generation, Int. J. Hydrogen Energy, 2022, vol. 47, no. 89, pp. 37742–37759. https://doi.org/10.1016/j.ijhydene.2022.08.297

    Article  CAS  Google Scholar 

  10. Coronado, J.M., Fresno, F., Hernández-Alonso, M.D., and Portela, R., Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, London: Springer, 2013. https://doi.org/10.1007/978-1-4471-5061-9

    Book  Google Scholar 

  11. Pleskov Yu.V. Fotoelektrokhimicheskoe preobrazovanie solnechnoi energii (Photoelectrochemical Conversion of Solar Energy), Moscow: Khimiya, 1990.

  12. Moridon, S.N.F., Yunus, K.A.R.M., Minggu, L.J., and Kassim, M.B., Photocatalytic water splitting performance of TiO2 sensitized by metal chalcogenides: a review, Ceram. Int., 2022, vol. 48, no. 5, pp. 5892–5907. https://doi.org/10.1016/j.ceramint.2021.11.199

    Article  CAS  Google Scholar 

  13. Costa, M.B., Araújo, M.A., Lima Tinoco, M.V., Brito, J.F., and Mascaro, L.H., Current trending and beyond for solar-driven water splitting reaction on WO3 photoanodes, J. Energy Chem., 2022, vol. 73, pp. 88–113. https://doi.org/10.1016/j.jechem.2022.06.003

    Article  CAS  Google Scholar 

  14. Piccinin, S., The band structure and optical absorption of hematite (α-Fe2O3): a first-principles GW-BSE study, Phys. Chem. Chem. Phys., 2019, vol. 21, no. 6, pp. 2957–2967. https://doi.org/10.1039/C8CP07132B

    Article  CAS  PubMed  Google Scholar 

  15. Tamirat, A.G., Rick, J., Dubale, A.A., Su, W.-N., and Hwang, B.-J., Using hematite for photoelectrochemical water splitting: a review of current progress and challenges, Nanoscale Horiz., 2016, vol. 1, no. 4, pp. 243–267. https://doi.org/10.1039/C5NH00098J

    Article  CAS  PubMed  Google Scholar 

  16. Malviya, K.D., Klotz, D., Dotan, H., Shlenkevich, D., Tsyganok, A., Mor, H., and Rothschild, A., Influence of Ti doping levels on the photoelectrochemical properties of thin-film hematite (α-Fe2O3) photoanodes, J. Phys. Chem. C, 2017, vol. 121, no. 8, pp. 4206–4213. https://doi.org/10.1021/acs.jpcc.7b00442

    Article  CAS  Google Scholar 

  17. Fernández-Climent, R., Giménez, S., and García-Tecedor, M., The role of oxygen vacancies in water splitting photoanodes, Sustain. Energy Fuels, 2020, vol. 4, no. 12, pp. 5916–5926. https://doi.org/10.1039/D0SE01305F

    Article  Google Scholar 

  18. Wang, Y., Zhang, J., Balogun, M.-S., Tong, Y., and Huang, Y., Oxygen vacancy-based metal oxides photoanodes in photoelectrochemical water splitting, Mater. Today Sustain., 2022, vol. 18, p. 100118. https://doi.org/10.1016/j.mtsust.2022.100118

    Article  Google Scholar 

  19. Yang, Q., Du, J., Li, J., Wu, Y., Zhou, Y., Yang, Y., Yang, D., and He, H., Thermodynamic and kinetic influence of oxygen vacancies on the solar water oxidation reaction of α-Fe2O3 photoanodes, ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 12, pp. 11625–11634. https://doi.org/10.1021/acsami.9b21622

    Article  CAS  PubMed  Google Scholar 

  20. Hu, J., Zhao, X., Chen, W., and Chen, Z., Enhanced charge transport and increased active sites on α-Fe2O3 (110) nanorod surface containing oxygen vacancies for improved solar water oxidation performance, ACS Omega, 2018, vol. 3, no. 11, pp. 14973–14980. https://doi.org/10.1021/acsomega.8b01195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Z., Karimata, I., Nagashima, H., Muto, S., Ohara, K., Sugimoto, K., and Tachikawa, T., Interfacial oxygen vacancies yielding long-lived holes in hematite mesocrystal-based photoanodes, Nat. Commun., 2019, vol. 10, no. 1, p. 4832. https://doi.org/10.1038/s41467-019-12581-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. More, P.D., Jadhav, P.R., Ghanwat, A.A., Dhole, I.A., Navale, Y.H., and Patil, V.B., Spray synthesized hydrophobic α-Fe2O3 thin film electrodes for supercapacitor application, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 23, pp. 17839–17848. https://doi.org/10.1007/s10854-017-7725-5

    Article  CAS  Google Scholar 

  23. Liang, T., Guo, X., Yuan, B., Kong, S., Huang, H., Fu, D., Zhang, F., Xu, J., and Li, X., Design of functionalized α-Fe2O3 (III) films with long-term anti-wetting properties, Ceram. Int., 2020, vol. 45, no. 5, pp. 6129–6135. https://doi.org/10.1016/j.ceramint.2019.11.077

    Article  CAS  Google Scholar 

  24. Zhang, Y., Su, Y., Wang, Y., He, J., McPherson, G.L., and John, V.T., Rapid fabrication of hollow and yolk-shell α-Fe2O3 particles with applications to enhanced photo-Fenton reactions, RSC Adv., 2017, vol. 7, no. 62, pp. 39049–39056. https://doi.org/10.1039/C7RA06621J

    Article  CAS  Google Scholar 

  25. Bokstein, B.S., Esin, V.A., Rodin, A.O., and Svetlov, I.L., Models for the porosity growth and dissolution in single-crystal nickel-base superalloys, Defect Diffus. Forum, 2010, vols. 297–301, pp. 187–192. https://doi.org/10.4028/www.scientific.net/DDF.297-301.187

  26. Lian, J., Duan, X., Ma, J., Peng, P., Kim, T., and Zheng, W., Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties, ACS Nano, 2009, vol. 3, no. 11, pp. 3749–3761. https://doi.org/10.1021/nn900941e

    Article  CAS  PubMed  Google Scholar 

  27. Van der Wood, F., Mossbauer effect in α-Fe2O3, Phys. Status Solidi, 1966, vol. 17, no. 1, pp. 417–432. https://doi.org/10.1002/pssb.19660170147

    Article  Google Scholar 

  28. Knyazev, Yu.V., Chumakov, A.I., Dubrovskiy, A.A., Semenov, S.V., Yakushkin, S.S., Kirillov, V.L., Martyanov, O.N., and Balaev, D.A., Mössbauer study of the magnetic transition in ϵ-Fe2O3 nanoparticles using synchrotron and radionuclide sources, JETP Lett., 2019, vol. 110, no. 9, p. 613–617. https://doi.org/10.1134/S0021364019210082

    Article  CAS  Google Scholar 

  29. Kopkova, E.K., Maiorov, D.V., and Kondratenko, T.V., Production and investigation of the structural, surface, and sorption properties of layered double hydroxides of magnesium and aluminium modified with polyethylene glycol, Sorbts. Khromatogr. Protsessy, 2022, vol. 21, no. 6, pp. 894–904. https://doi.org/10.17308/sorpchrom.2021.21/3836

    Article  CAS  Google Scholar 

  30. Mitra, S., Das, S., Mandal, K., and Chaudhuri, S., Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties, Nanotechnology, 2007, vol. 18, no. 27, p. 275608. https://doi.org/10.1088/0957-4484/18/27/275608

    Article  CAS  Google Scholar 

  31. Freitas, A.L.M., Muche, D.N.F., Leite, E.R., and Souza, F.L., Interface engineering of nanoceramic hematite photoelectrode for solar energy conversion, J. Am. Ceram. Soc., 2020, vol. 103, pp. 6833–6846. https://doi.org/10.1111/jace.17390

    Article  CAS  Google Scholar 

  32. Zhong, D.K. and Gamelin, D.R., Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck, J. Am. Chem. Soc., 2010, vol. 132, no. 12, pp. 4202–4207. https://doi.org/10.1021/ja908730h

    Article  CAS  PubMed  Google Scholar 

  33. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S., Solar water splitting cells, Chem. Rev., 2010, vol. 110, no. 11, pp. 6446–6473. https://doi.org/10.1021/cr1002326

    Article  CAS  PubMed  Google Scholar 

  34. Krysa, J., Zlamal, M., Kment, S., Brunclikova, M., and Hubicka, Z., TiO2 and Fe2O3 films for photoelectrochemical water splitting, Molecules, 2015, vol. 20, pp. 1046–1058. https://doi.org/10.3390/molecules20011046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao, C., Zhou, Z., Li, L., Wu, S., and Li, X., Tin oxygen-vacancy co-doping into hematite photoanode for improved photoelectrochemical performances, Nanoscale Res. Lett., 2020, vol. 15, no. 1, p. 54. https://doi.org/10.1186/s11671-020-3287-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kennedy, J.H. and Frese, K.W., Photooxidation of water at α-Fe2O3 electrodes, J. Electrochem. Soc., 1978, vol. 125, no. 5, p. 709. https://doi.org/10.1149/1.2131532

    Article  CAS  Google Scholar 

  37. Upul Wijayantha, K.G., Saremi-Yarahmadi, S., and Peter, L.M., Kinetics of oxygen evolution at α-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy, Phys. Chem. Chem. Phys., 2011, vol. 13, no. 12, pp. 5264–5270. https://doi.org/10.1039/C0CP02408B

    Article  CAS  PubMed  Google Scholar 

  38. Peter, L.M., Upul Wijayantha, K.G., and Tahir, A.A., Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes, Faraday Discuss., 2012, vol. 155, pp. 309–322. https://doi.org/10.1039/C1FD00079A

    Article  CAS  PubMed  Google Scholar 

  39. Braun, A., Sivula, K., Bora, D.K., Zhu, J., Zhang, L., Grätzel, M., Guo, J., and Constable, E.C., Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting, J. Phys. Chem. C, 2012, vol. 116, no. 32, pp. 16870–16875. https://doi.org/10.1021/jp304254k

    Article  CAS  Google Scholar 

  40. Deng, J., Lv, X., and Zhong, J., Photocharged Fe2TiO5/Fe2O3 photoanode for enhanced photoelectrochemical water oxidation, J. Phys. Chem. C, 2018, vol. 122, no. 51, pp. 29268–29273. https://doi.org/10.1021/acs.jpcc.8b08826

    Article  CAS  Google Scholar 

  41. Vasiljevic, Z.Z., Dojcinovic, M.P., Vujancevic, J.D., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N.B., Stojadinovic, S., Brankovic, G.O., and Nikolic, M.V., Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method, R. Soc. Open Sci., 2020, vol. 7, no. 9, p. 200708. https://doi.org/10.1098/rsos.200708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma, M., Yang, Y., Chen, Y., Ma, Y., Lyu, P., Cui, A., Huang, W., Zhang, Z., Li, Y., and Si, F., Photocatalytic degradation of MB dye by the magnetically separable 3D flower-like Fe3O4/SiO2/MnO2/BiOBr-Bi photocatalyst, J. Alloys Compd., 2021, vol. 861, p. 158256. https://doi.org/10.1016/j.jallcom.2020.158256

    Article  CAS  Google Scholar 

  43. Vu, X.H., Phuoc, L.H., Dien, N.D., Pham, T.T.H., and Thanh, L.D., Photocatalytic degradation of methylene blue (MB) over α-Fe2O3 nanospindles prepared by a hydrothermal route, J. Electron. Mater., 2019, vol. 48, no. 5, pp. 2978–2985. https://doi.org/10.1007/s11664-019-07056-2

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-38-90166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Demirov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirov, A.P., Blinkov, I.V., Belov, D.S. et al. Photocatalytic Properties of Porous Films Based on α-Fe2O3 Hollow Microspheres. Inorg Mater 59, 272–283 (2023). https://doi.org/10.1134/S0020168523030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030032

Keywords:

Navigation