Skip to main content
Log in

Intensification of Heat Exchange in Laminar Vortex Air Flow in a Narrow Channel with a Row of Inclined Oval Trenches

  • HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

With the use of multiblock computational technologies, the laminar flow and heat exchange in the modules arranged in a row at regular intervals in a plane-parallel channel, at the centers of which oval trenches oriented at an angle of 45o to the flow are positioned, were calculated at Re = 103. On the basis of the calculation data obtained, it was established that an increase in the maximum velocity of the flow in such a channel by one and a half times leads to the intensification of the heat exchange in it and an increase in the heat transfer from the surface region on its wall with an inclined trench by 80% with an increase in the hydraulic losses by 25%, as compared to those of an analogous smooth channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. K. Kalinin, G. A. Dreitser, I. Z. Kopp, and A. S. Myakochin, Effective Heat-Exchange Surfaces [in Russian], Ènergoatomizdat, Moscow (1998).

    Google Scholar 

  2. Yu. G. Nazmeev, Heat Exchange in the Laminar Liquid Flow in Discrete-Rough Channels [in Russian], Ènergoatomizdat, Moscow (1998).

    Google Scholar 

  3. B. V. Dzyubenko, Yu. A. Kuzma-Kichta, A. I. Leont’ev, I. I. Fedik, and L. P. Kholpanov, Intensification of Heat and Mass Exchange on the Macro-, Micro-, and Nanoscales [in Russian], FGUP “TsNIIATOMINFORM,” Moscow (2008).

    Google Scholar 

  4. A. I. Leont’ev (Ed.), Vortex Technologes for the Power Engineering [in Russian], Izd. Dom MÈI, Moscow (2017).

    Google Scholar 

  5. Z. Wang, K. S. Yeo, and B. C. Khoo, Numerical simulation of laminar channel flow over dimpled surface, AIAA Paper, No. 3964, 1192–1202 (2003).

    Google Scholar 

  6. S. A. Isaev, I. A. Pyshnyi, A. E. Usachov, and V. B. Kharchenko, Verification of the multiblock computational technology in calculating laminar and turbulent flow around a spherical hole on a channel wall, J. Eng. Phys. Thermophys., 75, No. 5, 1155–1158 (2002).

    Article  Google Scholar 

  7. O. Alshroof, J. Reizes, V. Timchenko, and E. Leonardi, Numerical evaluation of heat transfer from a spherical dimple in a flat plate: development of appropriate boundary conditions, Proc. Int. Mech. Eng. Congress and Exposition, ASME, No. 43977 (2007).

  8. S. A. Isaev, S. Z. Sapozhnikov, V. Yu. Mityakov, A. V. Mityakov, S. A. Mozhaiskii, and A. E. Usachov, Numerical analysis of the influence of the physical viscosity on the vortex heat transfer in laminar and turbulent flows around a heated plate with a shallow spherical hole, J. Eng. Phys. Thermophys., 82, No. 5, 847–859 (2009).

    Article  Google Scholar 

  9. A. A. Khalatov, Heat Exchange and Hydrodynamics near Surface Depressions (Dimples) [in Russian], ITTF NAU, Kiev (2005).

    Google Scholar 

  10. S. Hwang, H. Kwon, and H. Cho, Heat transfer with dimple/protrusion arrays in a rectangular duct with a low Reynolds number range, Int. J. Heat Fluid Flow, 29, No. 4, 916–926 (2008).

    Article  Google Scholar 

  11. N. Xiao, Q. Zhang, P. Ligrani, and R. Mongia, Thermal performance of dimpled surfaces in laminar flows, Int. J. Heat Mass Transf., 52, Nos. 7–8, 2009–2017 (2009).

    Article  Google Scholar 

  12. X. J. Wei, Y. K. Joshi, and P. M. Ligrani, Numerical simulation of laminar flow and heat transfer inside a microchannel with one dimpled surface, J. Electron. Packag., 127, 63–70 (2007).

    Article  Google Scholar 

  13. M. Xu, H. Lu, L. Gong, J. C. Chai, and X. Duan, Parametric numerical study of the flow and heat transfer in microchannel with dimples, Int. Commun. Heat Mass Transf., 76, 348–357 (2016).

    Article  Google Scholar 

  14. S. A. Isaev, A. I. Leont’ev, M. A. Gotovskii, Zhukova Yu V., and A. E. Usachov, Intensification of the heat exchange in the laminar flows of inhomogeneous media in narrow channels with spherical dimples, Tepl. Protsessy Tekh., No. 3, 82–88 (2009).

  15. S. A. Isaev, A. I. Leontiev, Yu. V. Zhukova, P. A. Baranov, M. A. Gotovskii, and A. E. Usachov, Numerical simulation of vortex heat transfer enhancement in transformer oil flow in a channel with one-row spherical dimples, Heat Transf. Res., 42, Issue 7, 613–628 (2011).

    Article  Google Scholar 

  16. S. A. Isaev and A. I. Leont’ev, Numerical simulation of the vortex intensification of the heat exchange in the turbulent flow over a spherical dimple on the wall of a narrow channel, Izv. Ross. Akad. Nauk, Teplofiz. Vys. Temp., 41, No. 5, 755–770 (2003).

    Google Scholar 

  17. S. A. Isaev, A. I. Leont’ev, A. V. Mityakov, and I. A. Pyshnyi, Intensification of tornado heat exchange in asymmetric holes on a plane wall, J. Eng. Phys. Thermophys., 76, No. 2, 266–270 (2003).

    Article  Google Scholar 

  18. S. A. Isaev, A. I. Leont’ev, and P. A. Baranov, Simulation of the vortex intensification of the heat exchange in the lowvelocity air flow in a rectangular channel with dimples, Part 2, Results of parametric investigations, Teploénergetika, 54, No. 8, 63–70 (2007).

    Google Scholar 

  19. S. A. Isaev and A. I. Leont’ev, Problems of simulating tornado-like heat transfer in turbulent flow past a dimpled relief on a narrow channel wall, J. Eng. Phys. Thermophys., 83, No. 4, 783–793 (2010).

    Article  Google Scholar 

  20. S. A. Isaev, E. Leonardi, V. Timchenko, and A. E. Usachov, Vortical investigation of heat transfer in microchannels with oval dimples, Heat Transf. Res., 41, No. 4, 413–424 (2010).

    Article  Google Scholar 

  21. S. A. Isaev, P. A. Baranov, and A. E. Usachev, Multiblock Computational Technologies in the VP2/3 Package on Aerothermodynamics, Lambert Academic Publishing, Saarbrücken (2013).

    Google Scholar 

  22. S. A. Isaev, A. I. Leont’ev, M. A. Gotovskii, A. E. Usachov, and Yu. V. Zhukova, Analysis of the increase in the thermohydraulic efficiency in the transformer-oil in a minichannel with a row of spherical and oval dimples on its heated wall, Izv. Ross. Akad. Nauk, Teplofiz. Vys. Temp., 51, No. 6, 884–890 (2013).

    Google Scholar 

  23. S. A. Isaev, A. I. Leont’ev, N. V. Kornev, È. Khassel’, and Ya. P. Chudnovskii, Intensification of the heat exchange in the laminar and turbulent flows in a narrow channel with a row of oval dimples, Teplofiz. Vys. Temp., 53, No. 3, 390–402 (2015).

    Google Scholar 

  24. S. A. Isaev, A. I. Leont’ev, M. E. Gul’tsova, and Yu. A. Popov, Rearrangement and intensification of the tornado-like flow in a narrow channel with an oval dimple as a result of an increase in its length at a constant dimple spot, Pis’ma Zh. Tekh. Fiz., 41, Issue 12, 89–96 (2015).

    Google Scholar 

  25. A. V. Shchelchkov, Simulation of the Intensification of the Heat Exchange in Channels of Cooling Systems by Surface Generators of Vortices, Doctoral Dissertation (in Engineering), KNITU-KAI, Kazan (2017).

  26. S. A. Isaev, A. V. Schelchkov, A. I. Leontiev, Yu. F. Gortyshov, P. A. Baranov, and I. A. Popov, Tornado-like heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area, Int. J. Heat Mass Transf., 109, 40–62 (2017).

    Article  Google Scholar 

  27. V. A. Fedorov and O. O. Mil’man, Condensers of Steam Turbines [in Russian], Izd. MGTU im. N. È. Baumana, Moscow (2013).

    Google Scholar 

  28. S. A. Isaev, A. I. Leont’ev, I. A. Popov, and A. V. Schelchkov, Vortex intensification of the laminar heat exchange in the air flows in narrow channels with rows of elongated oval dimples, Tr. Nauch. Prakt. Konf. "Energetics, Ecology, Energy Saving," KGU, Kaluga (2016), pp.13–15.

  29. Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leont’ev, Numerical Simulation of the Vortex Intensification of the Heat Exchange in Tube Banks [in Russian], Sudostroenie, St. Petersburg (2005).

    Google Scholar 

  30. S. A. Isaev (Ed.), Aerodynamics of Reinforced Bodies with Vortex Cells, Numerical and Physical Simulation [in Russian], Izd. Politekh. Univ., St. Petersburg (2016).

    Google Scholar 

  31. Y. Saad, Iterative methods for sparse linear systems, 2nd edn., Soc. Ind. and Appl. Math., Philadelphia (2003).

    Book  MATH  Google Scholar 

  32. D. Demidov, AMGCL: C++ Library For Solving Large Sparse Linear Systems with Algebraic Multigrid Method; http://amgcl.readthedocs.org.

  33. S. A. Isaev, N. V. Kornev, A. I. Leontiev, and E. Hassel, Influence of the Reynolds number and the spherical dimple depth on the turbulent heat transfer and hydraulic loss in a narrow channel, Int. J. Heat Mass Transf., 53, Issues 1–3, 178–197 (2010).

    Article  MATH  Google Scholar 

  34. J. Gostelow, Aerodynamics of Turbomachine Plates [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  35. G. Yu. Stepanov, Hydrodynamics of Turbomachine Plates [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Isaev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 4, pp. 1022–1034, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, S.A., Leont’ev, A.I., Mil’man, O.O. et al. Intensification of Heat Exchange in Laminar Vortex Air Flow in a Narrow Channel with a Row of Inclined Oval Trenches. J Eng Phys Thermophy 91, 963–974 (2018). https://doi.org/10.1007/s10891-018-1822-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1822-z

Keywords

Navigation