Skip to main content
Log in

Spectroscopic Study of a Helium Plasma Jet with Hydrocarbon Additives

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The results of a spectroscopic study of the conversion of acetylene and methane in a helium plasma jet produced by a direct current plasma torch are presented. The operating mode of the plasma torch corresponds to conditions that provide a high yield of carbon nanostructures. In the emission spectra recorded during the transverse observation of a 20-mm jet section following the outlet of the anode channel of the plasma torch, high-intensity Swan bands of the С2 molecule are the dominant component in the visible wavelength range. The spectra show atomic hydrogen lines of the HI Balmer series from Hα to Hε, numerous CI carbon lines from ultraviolet 247.9 nm to infrared 962–966 nm, and a number of HeI helium lines. The axial temperature values of the plasma jet were spectrally determined by the observed ionized carbon CII lines 283.7 nm, 392.0 and 426.7 nm. A joint analysis of the emission spectra and the mixture composition calculated in the Saha–Boltzmann approximation revealed the nature of the spatial heterogeneity of the studied He : C : H plasma jet. It is manifested by the difference in the electron temperature of the axial region of the jet, which is measured with ionized carbon lines CII (Te(0) = 12 000–14 000 K) from the vibrational and rotational temperatures of C2 molecules (TV = TR ≅ 5000 K) that emit intensely at the jet periphery. The electron density measured along the Hβ and Hγ line widths, which varies in the range of the observed jet region of ne = (4–2) × 1016 cm–3, corresponds to the ionization equilibrium in a plasma He : C : H mixture with an electron temperature close to Te measured by carbon-ion lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Kramida A., Ralchenko Yu., Reader J. NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1). https://physics.nist.gov/asd [2019, June 12]. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F

  2. NIST Chemical Kinetics Database Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data Version 2017.07 (http://kinetics.nist.gov/kinetics).

REFERENCES

  1. Kim, J., Heo, S.B., Gu, G.H., and Suh, J.S., Nanotecnology, 2010, vol. 21, 095601.

    Article  ADS  Google Scholar 

  2. Fronczak, M., Fazekas, P., Károly, Z., Hamankiewicz, B., and Bystrzejewski, M., Chem. Eng. J., 2017, vol. 322, p. 385.

    Article  Google Scholar 

  3. Tatarova, E., Dias, A.I., Henriques, J.P., Botelho do Rego, A.M., Ferraria, A.M., Abrashev, M., Luhrs, C., Phillips, J., Dias, F.M., and Ferreira, C.M., J. Phys. D: Appl. Phys., 2014, vol. 47, 385501.

    Article  ADS  Google Scholar 

  4. Jung Sang, ACS Nano, 2014, vol. 8, no. 5, p. 4190.

    Article  Google Scholar 

  5. Mohanta, A., Lanfant, B., and Leparoux, M., Plasma Chem. Plasma Process., 2019, vol. 39, p. 1161.

    Article  Google Scholar 

  6. Shavelkina, M.B., Filimonova, E.A., Amirov, R.Kh., and Isakaev, E.Kh., J. Phys. D: Appl. Phys., 2018, vol. 51, no. 29, 294005.

    Article  ADS  Google Scholar 

  7. Shavelkina, M.B., Amirov, R.H., Katarzhis, V.A., and Kiselev, V.I., J. Phys.: Conf. Ser., 2016, vol. 748, no. 1, 012021.

    Google Scholar 

  8. Isakaev, E.Kh., Sinkevich, O.A., Tyuftyaev, A.S., and Chinnov, V.F., High Temp., 2010, vol. 48, no. 1, p. 97.

    Article  Google Scholar 

  9. Eletskii, A.V., Phys.—Usp., 1997, vol. 40, no. 9, p. 899.

    Article  ADS  Google Scholar 

  10. Rakov, E.G., Russ. Chem. Rev., 2000, vol. 69, no. 1, p. 35.

    Article  ADS  Google Scholar 

  11. Amirov, R.H., Isakaev, E.Kh., Shavelkina, M.B., and Shatalova, T.B., J. Phys.: Conf. Ser., 2014, vol. 550, 012023.

    Google Scholar 

  12. Amirov, R., Shavelkina, M., Alihanov, N., Shkolnikov, E., Tyuftyaev, A., and Vorob’eva, N., J. Nanomater., 2015, vol. 2015, 724508. https://doi.org/10.1155/2015/724508

    Article  Google Scholar 

  13. Shavelkina, M., Amirov, R., and Bilera, I., Mater. Today: Proc., 2018, vol. 5, 25956.

    Google Scholar 

  14. Rempel, A.A., Russ. Chem. Rev., 2007, vol. 76, no. 5, p. 435.

    Article  ADS  Google Scholar 

  15. Amirov, R.H., Asinovsky, E.I., Isakaev, E.Kh., and Kiselev, V.I., J. High Temp. Mater. Proc., 2006, vol. 10, no. 2, p. 197.

    Article  Google Scholar 

  16. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Dolgoprudnyi: Intellekt, 2009.

  17. Nizkotemperaturnaya plazma (Low-Temperature Plasma), vol. 1: Teoriya stolba elektricheskoi dugi (Theory of Electric Arc Column), Engel’sht, V.S. and Uryukov, B.A., Eds., Novosibirsk: Nauka, 1990.

  18. Korshunov, O.V., Chinnov, V.F., and Kavyrshin, D.I., High Temp., 2019, vol. 57, no. 2, p. 308.

    Article  Google Scholar 

  19. Isakaev, E.Kh., Chinnov, V.F., Sargsyan, M.A., and Kavyrshin, D.I., High Temp., 2013, vol. 51, no. 2, p. 141.

    Article  Google Scholar 

  20. Jonkers, J., van de Sandle, M., Sola, A., Gamero, A., van der Mullen, J., Plasma Sources Sci. Technol., 2003, vol. 12, p. 30.

    Article  ADS  Google Scholar 

  21. Chinnov, V.F., Kavyrshin, D.I., Ageev, A.G., Korshunov, O.V., Sargsyan, M.A., and Efimov, A.V., J. Phys.: Conf. Ser., 2016, vol. 774, 012200.

    Google Scholar 

  22. Korshunov, O.V., Chinnov, V.F., Kavyrshin, D.I., and Ageev, A.G., J. Phys.: Conf. Ser., 2016, vol. 774, 012199.

    Google Scholar 

  23. Sobel’man, I.I., Vvedenie v teoriyu atomnykh spektrov (Introduction to the Theory of Atomic Spectra), Moscow: Fizmatgiz, 1963.

  24. Ochkin, V.N., Spektroskopiya nizkotemperaturnoi plazmy (Spectroscopy of Low-Temperature Plasma), Moscow: Fizmatlit, 2010, 2nd ed.

  25. Suemitsu, H., Iwaki, K., Takemoto, Y., et al., J. Phys. B, 1990, vol. 23, p. 1129.

    Article  ADS  Google Scholar 

  26. Plasma Diagnostics, Lochte-Holtgreven, W., Ed., Amsterdam: North-Holland, 1968.

  27. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.

  28. Smirnov, B.M., Protsessy s uchastiem malykh chastits v vozbuzhdennom ili ionizovannom gaze (Processes Involving Small Particles in Excited or Ionized Gas), Moscow: Logos, 2012.

Download references

ACKNOWLEDGMENTS

We are grateful to our colleague M.A. Sargsyan for the participation in the experiment and discussion of results.

Funding

This study was supported by the Russian Foundation for Basic Research, project. nos. 18-08-00306 and 19-08-00081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Kavyrshin.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavelkina, M.B., Amirov, R.K., Kavyrshin, D.I. et al. Spectroscopic Study of a Helium Plasma Jet with Hydrocarbon Additives. High Temp 58, 309–316 (2020). https://doi.org/10.1134/S0018151X20030165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20030165

Navigation