Skip to main content
Log in

Spectroscopy of microwave discharge in liquid C7–C16 hydrocarbons

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

Emission spectra of in-liquid microwave plasma in C7–C16 hydrocarbons were studied in the range of wavelengths from 200 to 800 nm. It was shown that spectra are similar for all studied hydrocarbons. Swan-bands only were observed in the plasma emission. Model of Swan-bands emission was designed for experimental spectra processing. Rotational and vibrational temperatures determined from sequences with v = −1, 0, +1 of C2-bands were 1600 ± 200 K and 7000 ± 2000 K correspondingly. Addition of Ar in the plasma decreased the rotational up to 700 K but did not change the vibrational temperature. It was shown that studied in-liquid microwave plasma is non-equilibrium. Results of electrodynamic modeling of microwave discharge apparatus and some information on the solid phase generated in hydrocarbon plasma processing were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruggeman, P. and Leys, C., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 053001.

    Article  ADS  Google Scholar 

  2. Nomura, S. and Toyota, H., Appl. Phys. Lett., 2003, vol. 83, p. 4503.

    Article  ADS  Google Scholar 

  3. Nomura, S., Toyota, H., Tawara, M., and Yamashota, H., Appl. Phys. Lett., 2006, vol. 88, p. 231502.

    Article  ADS  Google Scholar 

  4. Nomura, S., Toyota, H., Mukasa, S., Yamashita, H., and Maehara, T., Appl. Phys. Lett., 2006, vol. 88, p. 211503.

    Article  ADS  Google Scholar 

  5. Nomura, S., Toyota, H., Mukasa, S., Yamashita, H., Maehara, T., and Kawashim, A., J. Appl. Phys., 2009, vol. 106, p. 073306.

    Article  ADS  Google Scholar 

  6. Ishijima, T., Sugiura, H., Satio, R., Toyada, H., and Sugai, H., Plasma, Sources Sci. Technol., 2010, vol. 19, p. 015010.

    Article  ADS  Google Scholar 

  7. Ishijima, T., Hotta, H., and Sugai, H., Appl. Phys. Lett., 2007, vol. 91, p. 121501.

    Article  ADS  Google Scholar 

  8. Buravtsev, N.N., Konstantinov, V.S., Lebedev, Yu.A., and Mavlyudov, T.B., in Proceedings of the Eighth International Workshop “Microwave Discharges: Fundamentals and Applications,” Zvenigorod, Moscow oblast, Russia, September 10–14, 2012, Lebedev, Yu.A., Ed., Moscow: Yanus-K, 2012, p. 167.

  9. Camerotto, E., de Schepper, R., Nikiforov, A.Y., Brems, S., Shamiryan, D., Boullart, W., Leys, C., and de Gendt, S., J. Phys. D: Appl. Phys., 2012, vol. 45, p. 435201.

    Article  ADS  Google Scholar 

  10. Lebedev, Yu.A., Shakhatov, V.A., Epstein, I.L., and Yusupova, E.V., in Final Scientific Programme and Books of Abstracts of the Fifth Central European Symposium on Plasma Chemistry, Balatonalmádi, Hungary, August 25–29, 2013, Balatonalmádi, 2013, p. 66.

    Google Scholar 

  11. Alexandrov, K.V., Volkov, A.A., Grachov, L.P., Esakov, I.I., and Severinov, L.G., Tech. Phys., 2011, vol. 56, no. 3, p. 351.

    Article  Google Scholar 

  12. COMSOL 3.5a. http://www.comsol.com/.

  13. Fraser, P.A., Jarmain, W.R., and Nicholls, R.W., Astrophys. J., 1954, vol. 119, p. 286.

    Article  ADS  Google Scholar 

  14. Nicholls, R.W., Proc. Phys. Soc., London, Sect. A, 1956, vol. 69, p. 741.

    Article  ADS  Google Scholar 

  15. Jain, D.C., J. Quant. Spectrosc. Radiat. Transfer, 1964, vol. 4, p. 427.

    Article  ADS  Google Scholar 

  16. Jeunehomme, M. and Schwenker, R.P., J. Chem. Phys., 1965, vol. 42, p. 2406.

    Article  ADS  Google Scholar 

  17. Spindle, R.J., J. Quant. Spectrosc. Radiat. Transfer, 1965, vol. 5, p. 165.

    Article  ADS  Google Scholar 

  18. Mentall, J.E. and Nicholls, R.W., Proc. Phys. Soc., London 1965, vol. 86, p. 873.

    Article  ADS  Google Scholar 

  19. Farbrain, A.R., J. Quant. Spectrosc. Radiat. Transfer, 1966, vol. 6, p. 325.

    Article  ADS  Google Scholar 

  20. Arnold, J.O., J. Quant. Spectrosc. Radiat. Transfer, 1968, vol. 8, p. 1781.

    Article  ADS  Google Scholar 

  21. McCallum, J.C., Jarmain, W.R., and Nicholls, R.W., CRESS Spectroscopic Report no. 1, Toronto: York University, 1970, p. 13.

    Google Scholar 

  22. Danylewich, L.L. and Nicholls, R.W., Proc. R. Soc. London, 1974, vol. A339, p. 197.

    Article  ADS  Google Scholar 

  23. Cooper, D.M. and Nicholls, R., W., J. Quant. Spectrosc. Radiat. Transfer, 1975, vol. 15, p. 139.

    Article  ADS  Google Scholar 

  24. Bell, R.A., Quant. Spectrosc. Radiat. Transfer, 1976, vol. 16, p. 177.

    Article  ADS  Google Scholar 

  25. Curtis, L., Engman, B., and Erman, P., Phys. Scr., 1976, vol. 13, p. 270.

    Article  ADS  Google Scholar 

  26. Tatarczyk, T., Fink, E.H., and Becke, K.H., Chem. Phys. Lett., 1976, vol. 40, p. 126.

    Article  ADS  Google Scholar 

  27. Nicholls, R.W., Annu. Rev. Astron. Astrophys., 1977, vol. 15, p. 197.

    Article  ADS  Google Scholar 

  28. Cooper, D.M., PhD Thesis, Toronto: York University, 1979.

  29. Caubet, P. and Dorthe, G., Chem. Phys. Lett., 1994, vol. 218, p. 529.

    Article  ADS  Google Scholar 

  30. Rodio, J.J., PhD Thesis, Raleigh, North Carolina, United States: North Carolina State University, 2012.

  31. Pears, R.W.B. and Gaydon, A.G., The Identification of Molecular Spectra, London: Chapman and Hall, 1941.

    Google Scholar 

  32. Kuznetsova, L.A., Kuzmenko, N.E., Kuziakov, Yu.Ya., and Plastinin, Yu.A., Probabilities of Optic Transitions of Diatomic Molecules, Moscow, Nauka, 1980.

    Google Scholar 

  33. Hubner, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure, Volume IV: Constants of Diatomic Molecules, New York: Van Northland, 1979, parts 1, 2.

    Book  Google Scholar 

  34. Kuzmenko, N.E., Kuznetsova, L.A., and Kuziakov, Yu.A., Franck-Condon Factors of Diatomic Molecules, Moscow: Moscow State University, 1984.

    Google Scholar 

  35. Ochkin, V.N., Spectroscopy of Low Temperature Plasma, Moscow: Fizmatlit, 2006.

    Google Scholar 

  36. Kovacs, I., Rotational Structure in the Spectra of Diatomic Molecules, Budapest: Akademia Kiado, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Epstein, I.L., Shakhatov, V.A. et al. Spectroscopy of microwave discharge in liquid C7–C16 hydrocarbons. High Temp 52, 319–327 (2014). https://doi.org/10.1134/S0018151X14030195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14030195

Keywords

Navigation