Skip to main content
Log in

A New Mechanism of Interaction between a Welding Arc Discharge of Reverse-Polarity Direct Current and an Aluminum Surface

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The results of a study of aluminum welding by reverse-polarity direct current in a medium of protective gases (argon) at the stage of the binding and formation of the pool of melted metal are presented. It is shown that cathode spots in a current range of 5–50 A and action time of up to 1 s do not clean the cathode film from the aluminum surface but remelt the surface layer. The types of cathode spots that form on the aluminum surface are analyzed. It is shown that evaporation is the main mechanism for the removal of the oxide film. A new mechanism of the interaction between a welding arc discharge an aluminum surface is proposed: the main role in the formation of the welding pool is played by an immobile cathode spot, which, on the one hand, evaporates the oxide film and, on the other, intensely heats the surface layer of the aluminum to the phase transition due to high heat density. After the formation of the welding pool, the immobile cathode spot disappears, followed by the diffusion regime of welding arc burning. The regime is characterized by a uniform distribution of the electric field over the length of the discharge gap with a low potential decrease and occupies almost whole interelectrode gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Additional materials are situated at DOI https://doi.org/10.1134/S0018151X19060063

REFERENCES

  1. Balanovskii, A.E., High Temp., 2018, vol. 56, no. 3, p. 319.

    Article  Google Scholar 

  2. Balanovskii, A.E., High Temp., 2018, vol. 56, no. 4, p. 486.

    Article  Google Scholar 

  3. Nikiforov, G.D., Metallurgiya svarki plavleniem alyuminievykh splavov (Metallurgical Aspects of Fusion Welding of Aluminum Alloys), Moscow: Mashinostroenie, 1972.

  4. Mathers, G., The Welding of Aluminium and Its Alloys, Cambridge: Woodhead, 2002.

    Book  Google Scholar 

  5. Sarrafi, R. and Kovacevic, R., Weld. J., 2010, vol. 89, p. 1.

    Google Scholar 

  6. Abralov, M.A., Argonodugovaya svarka alyuminievykh splavov (Argon Arc Welding of Aluminum Alloys), Tashkent: Fan, 1989.

  7. Yusufova, Z.A. and Leskov, G.I., Svar. Proizvod., 1970, no. 7, p. 57.

  8. Budnik, V.P., Rabkin, D.M., Smiyan, O.D., and Tovmachenko, V.N., Avtom. Svarka, 1975, no. 10, p. 74.

  9. Budnik, V.P, Avtom. Svarka, 1994, no. 12, p. 23.

  10. Sarrafi, R. and Kovacevic, R., Proc. Inst. Mech. Eng.,Part B, 2009, vol. 223, p. 1143.

    Google Scholar 

  11. Shi, Z., Yuan, Q., Zhao, R., et al., IEEE Trans. Plasma Sci., 2011, vol. 39, no. 7, p. 1585.

    Article  ADS  Google Scholar 

  12. Takeda K. and Takeuchi, S., Mater. Trans.,JIM, 1997, vol. 38, no. 7, p. 636.

    Google Scholar 

  13. Saito, M., Tobe, S., Iwao, T., and Inaba, T., in Proc. 22nd Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV), Matsue, 2006, p. 550.

  14. Shi, Z., Li, W., Yan, N., Zhang, Y., et al., in Proc. 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV), Tomsk, 2012, p. 293.

  15. Tang, Z., Wu, R., Yang, S., et al., IEEE Trans. Plasma Sci., 2015, vol. 43, no. 5, p. 1793.

    Article  ADS  Google Scholar 

  16. Tang, Z.L., Yang, K., Liu, H.X., et al., Phys. Plasmas, 2016, vol. 23, no. 3, 033501.

    Article  ADS  Google Scholar 

  17. Takeda, K. and Sugimoto, M., IEEE Trans. Plasma Sci., 2001, vol. 29, no. 5, p. 718.

    Article  ADS  Google Scholar 

  18. Li, W., Shi, Z., Wang, C., et al., IEEE Trans. Plasma Sci., 2017, vol. 45, no. 1, p. 106.

    Article  ADS  Google Scholar 

  19. Kamishima, S., Iwao, T., and Yumoto, M., IEEJ Trans. Electr. Electron. Eng., 2010, vol. 5, no. 6, p. 670.

    Article  Google Scholar 

  20. Sato, A., Iwao, T., and Yumoto, M., IEEE Trans. Plasma Sci., 2007, vol. 35, no. 4, p. 1004.

    Article  ADS  Google Scholar 

  21. Takeda, K., Surf. Coat. Technol., 2000, vol. 131, nos. 1–3, p. 234.

    Article  Google Scholar 

  22. Shi, Z., Jia, S., Wang, L., Yuan, Q., and Song, X., J. Phys. D: Appl. Phys., 2008, vol. 41, no. 17, 175209.

    Article  ADS  Google Scholar 

  23. Mesyats, G.A., Ektony v vakuumnom razryade: proboi, iskra, duga (Actons in a Vacuum Discharge: Breakdown, Spark, Arc), Moscow: Nauka, 2000.

  24. Iwao, T., Inagaki, Y., and Yumoto, M., Vacuum, 2006, vol. 80, nos. 11–12, p. 1284.

    Article  ADS  Google Scholar 

  25. Rakhovskii, V.I., Fizicheskie osnovy kommutatsii elektricheskogo toka v vakuume (Physical Principles of Switching Electric Current in Vacuum), Moscow: Nauka, 1970.

  26. Vacuum Arcs: Theory and Application, Lafferty, J.M., Ed., New York: Wiley, 1980.

    Google Scholar 

  27. Lyubimov, G.A. and Rakhovskii, V.I., Sov. Phys. Usp., 1978, vol. 21, no. 4, p. 693.

    Article  ADS  Google Scholar 

  28. Tashiro, S., Sawato, H., and Tanaka, M., Trans.JWRI, 2010, vol. 39, no. 2, p. 180.

    Google Scholar 

  29. Lenivkin, V.A., Dyurgerov, N.G., and Sagirov, Kh.N., Tekhnologicheskie svoistva svarochnoi dugi v zashchitnykh gazakh (Technological Properties of a Welding Arc in Shielding Gases), Moscow: Mashinostroenie, 1989.

  30. Lapin, I.E., Kosovich, V.A., and Savinov, A.V., Svar. Proizvod., 1996, no. 10, p. 17.

  31. Zhao, L., Wang, Q., Yingchun, G., Cong, B., Surf. Rev. Lett., 2015, vol. 22, no. 6, 1 550 079.

    Article  Google Scholar 

  32. Balanovskii, A.E., Svar. Proizvod., 2016, no. 6, p. 31.

  33. Balanovskii, A.E., High Temp., 2016, vol. 54, no. 5, p. 627.

    Article  Google Scholar 

  34. Ros, J. and Anders, A., J. Phys. D: Appl. Phys., 2008, vol. 38, no. 23p. 4184.

    ADS  Google Scholar 

  35. Wang, Q., Yingchun, G., Cong, B., and Qi, B., J. Laser Appl., 2016, vol. 28, 022507.

    Article  Google Scholar 

  36. Dimogerontakis, T., Oltra, R., and Heintz, O., Appl. Phys. A, 2005, vol. 81, no. 6, p. 1173.

    Article  ADS  Google Scholar 

  37. Li Meng, Xie De-Gang, Ma Evan, Li Ju, Zhang Xi-Xiang, and Shan, Z.-W., Nat. Communю, 2017, vol. 8, p. 14564.

    Article  ADS  Google Scholar 

  38. Xie, D.-G., Wang, Z.-J., Sun, J., Li, J., Ma, E., and Shan, Z.-W., Nat. Mater., 2015, vol. 14, p. 1038.

    Google Scholar 

  39. Katoh, M., Nishio, K., Yamaguchi, T., and Mukae, S., Weld. Int., 1995, vol. 9, no. 5, p. 360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Balanovskii.

Additional information

Translated by A. Nikol’skii

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balanovskii, A.E. A New Mechanism of Interaction between a Welding Arc Discharge of Reverse-Polarity Direct Current and an Aluminum Surface. High Temp 57, 784–797 (2019). https://doi.org/10.1134/S0018151X19060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19060063

Navigation