Skip to main content
Log in

Spark Stage of Welding Arc Discharge Binding on an Aluminum Surface

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

The article presents a study of the spark stage of binding of the welding arc discharge on the surface of aluminum covered by oxide film. The experiments have shown the formation of cathode- and anodedirected leaders in a nonuniform field between the pin cathode (tungsten) and the plate (aluminum). It has been found that, if the cathode spot occurs against the background of uniform discharge glow, then the spark channel forms, as a rule, in two stages. At the first stage, a diffuse channel bound to the cathode spot that forms in the gap. At the second stage, a highly conductive contracted spark channel spreads from the cathode side along the diffuse channel; the brightness of that spark channel is comparable to that of the cathode plasma glow. From the color spectrum, it has been found that intensive aluminum emission takes place in the domain of binding spots already at the stage of avalanche-streamer spark formation. The estimated calculation of the heat flux rate in the binding spot of the spark discharge has shown values of 106–108 W/cm2, i.e., comparable to laser heating parameters. The spark discharge exerts a significant thermal impact consisting of melting of the surface in the spark binding zone and the development of the recrystallization process of an amorphous film matrix in the zone of thermal effect. Electron diffraction through the thin film layer in the thermal effect zone has shown clear concentric rings corresponding to the polycrystal γ-phase of Al2O3. According to transmission electron microscope data, the average size of γ-phase grains in the surface film layer after impact by the spark is d = 8–15 nm, whereas the volume of the produced γ-phase is at least 70%. The stable thermodynamic α-phase in the melting zone has been fixed. By the moment of arc discharge excitation, the entire aluminum surface in the spark-binding zone has been free of oxide film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikiforov, G.D., Metallurgiya svarki plavleniem alyuminievykh splavov (Metallurgy of Welding by Melting of Aluminum Alloys), Moscow: Mashinostroenie, 1972.

    Google Scholar 

  2. Mathers, G., The Welding of Aluminium and Its Alloys, Cambridge: Woodhead, 2010.

    Google Scholar 

  3. Gazy i okisly v alyuminievykh deformiruemykh splavakh (Gases and Oxides in Deformable Aluminum Alloys), Dobatkin, V.I., Eds., Moscow: Metallurgiya, 1976.

    Google Scholar 

  4. Dovbishchenko, I.V. and Steblovskii, B.A., Avtom. Svarka, 2002, no. 12, p. 32.

    Google Scholar 

  5. Miyake, H., Kokura, S., and Shinida, T., J. Light Met. Weld. Constr., 1985, vol. 23, p. 433.

    Google Scholar 

  6. Arc welding of alternating current with rectangular wave form, in Ekspress-informatsiya. Avtomatizirovannyi elektroprivod, elektrotekhnologiya i elektrosnabzhenie promyshlennykh predpriyatii (Automated Electric Drive, Electrotechnology, and Power Supply of Industrial Enterprises), VINITI, 1970, no. 9, p. 14.

  7. Rabkin, D.M., Voropai, N.M., and Mishenkov, V.A., Avtom. Svarka, 1968, no. 7, p. 74.

    Google Scholar 

  8. Korotkova, G.M., Slavin, G.A., and Filippov, M.A., Svar. Proizvod., 1971, no. 10, p. 4.

    Google Scholar 

  9. Ishchenko, A.Ya., Chayun, A.G., Mishenkov, V.A., et al., Avtom. Svarka, 1978, no. 10, p. 48.

    Google Scholar 

  10. Syoji, M., Ikkai, T., Onuma, A., and Ishimaru, K., J.Weld. Soc., 1978, vol. 47, p. 747.

    Article  Google Scholar 

  11. Kokura, S., Miyake, H., Sato, A., Shoji, M., Sugiyama, S., and Ikkai, T., J. Weld. Soc., 1982, vol. 51, p. 32.

    Article  Google Scholar 

  12. Voropai, N.M. and Mishenkov, V.A., Avtom. Svarka, 2002, no. 12, p. 52.

    Google Scholar 

  13. Yusufova, Z.A. and Leskov, G.I., Svar. Proizvod., 1970, no. 7, p. 57.

    Google Scholar 

  14. Budnik, V.P., Rabkin, D.M., Smiyan, O.D., and Tovmachenko, V.N., Avtom. Svarka, 1975, no. 10, p. 74.

    Google Scholar 

  15. Budnik, V.P., Avtom. Svarka, 1994, no. 12, p. 23.

    Google Scholar 

  16. Sarrafi, R. and Kovacevic, R., Weld. J., 2010, vol. 89, p. 1.

    Google Scholar 

  17. Sarrafi, R. and Kovacevic, R., Proc. Inst. Mech. Eng., Part B, 2009, vol. 223, p. 1143.

    Article  Google Scholar 

  18. Budnik, V.P., Avtom. Svarka, 2003, no. 1, p. 38.

    Google Scholar 

  19. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Dolgoprudnyi: Intellekt, 2009.

    Google Scholar 

  20. Korolev, Yu.D. and Mesyats, G.A., Avtoemissionnye i vzryvnye protsessy v gazovom razryade (Autoemission and Explosive Processes in a Gas Discharge), Novosibirsk: Nauka, 1982.

    Google Scholar 

  21. Korolev, Yu.D. and Mesyats, G.A., Fizika impul’snogo proboya gazov (Physics of Pulse Gas Breakdown), Moscow: Nauka, 1991.

    Google Scholar 

  22. Akhmadeev, V.V., Vasilyak, L.M., and Kostyuchenko, S.V., Zh. Tekh. Fiz., 1996, vol. 66, no. 4, p. 58.

    Google Scholar 

  23. Anders, A., Cathodic Arcs: From Fractal Spots to Energetic Condensation, Springer, 2008.

    Book  Google Scholar 

  24. Juttner, B., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 103.

    Article  ADS  Google Scholar 

  25. Tavadze, F.N., Shalamberidze, O.P., Okrosashvili, M.N., and Kuteliya, E.R., Probl. Spets. Elektrometall., 1981, vol. 14, p. 71.

    Google Scholar 

  26. Balanovskii, A.E., Svar. Proizvod., 2016, no. 6, p. 31.

    Google Scholar 

  27. Balanovskii, A.E., High Temp., 2016, vol. 54, no. 5, p. 627.

    Article  Google Scholar 

  28. Storozh, V.V., Gorelik, I.V., and Labinskaya, N.G., Zh. Tekh. Fiz., 1996, vol. 66, no. 6, p. 86.

    Google Scholar 

  29. Budnik, V.P., Steblovskii, B.A., Buts’ko, M.G., and Krylov, V.G., Avtom. Svarka, 1982, no. 8, p. 68.

    Google Scholar 

  30. Balanovskii, A.E., Teplofiz. Vys. Temp., 1993, vol. 31, no. 2, p. 328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Balanovskii.

Additional information

Original Russian Text © A.E. Balanovskii, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 3, pp. 329–337.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balanovskii, A.E. Spark Stage of Welding Arc Discharge Binding on an Aluminum Surface. High Temp 56, 319–326 (2018). https://doi.org/10.1134/S0018151X18030033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18030033

Navigation