Skip to main content
Log in

Experimental Study of Some Characteristics of Nonstationary Wall-Free Fire Whirls

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

This paper is aimed to demonstrate an opportunity of the generation of nonstationary wall-free fire whirls under laboratory conditions without using mechanical swirling devices and to estimate their integral parameters. A simple experimental facility, making possible the generation of concentrated fire vortex structures by means of combustion of solid fuel (urotropine) arranged symmetrically on a metallic underlying surface, is described. With the use of photography, some novel data on the probability of generation of fire whirls depending on the experimental mode have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Muraszew, A., Fedele, J.B., and Ruby, W.C., Combust. Flame, 1979, vol. 34, p. 29.

    Article  Google Scholar 

  2. Battaglia, F., McGrattan, K., Rehm, R., and Baum, H., Combust. Theory Modell., 2000, vol. 4, p. 123.

    Article  ADS  Google Scholar 

  3. Pinto, C., Viegas, D., Almeida, M., and Raposo, J., Fire Saf. J., 2017, vol. 87, p. 37.

    Article  Google Scholar 

  4. Varaksin, A.Yu., High Temp., 2016, vol. 54, no. 3, p. 409.

    Article  Google Scholar 

  5. Forthofer, J.M. and Goodrick, S.L., J. Combust., 2011, vol. 2011, 984363.

    Article  Google Scholar 

  6. Ebert, C.H.V., NFPA Q., 1963, vol. 56, p. 253.

    Google Scholar 

  7. Emmons, H.W. and Ying, S.J., Proc. Combust. Inst., 1967, vol. 11, p. 475.

    Article  Google Scholar 

  8. Chuah, K.H. and Kushida, G., Proc. Combust. Inst., 2007, vol. 31, p. 2599.

    Article  Google Scholar 

  9. Lei, J., Liu, N., Zhang, L., and Satoh, K., Combust. Flame, 2015, vol. 162, p. 745.

    Article  Google Scholar 

  10. Lei, J., Liu, N., and Satoh, K., Proc. Combust. Inst., 2015, vol. 35, p. 2503.

    Article  Google Scholar 

  11. Byram, G.M. and Martin, R.E., Fire Control Notes, 1962, vol. 33, p. 13.

    Google Scholar 

  12. Byram, G.M. and Martin, R.E., Forest Sci., 1970, vol. 16, p. 386.

    Google Scholar 

  13. Martin, R.E., Pendleton, D.W., and Burgess, W., Fire Technol., 1976, vol. 12, p. 33.

    Article  Google Scholar 

  14. Kuwana, K., Morishita, S., Dobashi, R., Chuah, K.H., and Saito, K., Proc. Combust. Inst., 2011, vol. 33, p. 2425.

    Article  Google Scholar 

  15. Chuah, K.H., Kuwana, K., Saito, K., and Williams, F.A., Proc. Combust. Inst., 2011, vol. 33, p. 2417.

    Article  Google Scholar 

  16. Snegirev, A.Y., Marsden, J.A., Francis, J., and Makhviladze, G.M., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 2523.

    Article  Google Scholar 

  17. Chen, A., Cui, X., and Wang, W., Fire Technol., 2013, vol. 49, p. 827.

    Article  Google Scholar 

  18. Shinohara, M. and Matsushima, S., Fire Saf. J., 2012, vol. 54, p. 144.

    Article  Google Scholar 

  19. Emory, R.I. and Saito, K., Fire Technol., 1982, vol. 18, p. 319.

    Article  Google Scholar 

  20. Kuwana, K., Sekimoto, K., Saito, K., and Williams, F.A., Fire Saf. J., 2008, vol. 43, p. 252.

    Article  Google Scholar 

  21. Kuwana, K., Sekimoto, K., Minami, T., Tashiro, T., and Saito, K., Proc. Combust. Inst., 2013, vol. 34, p. 2625.

    Article  Google Scholar 

  22. Zhou, R. and Wu, Z.N., J. Fluid Mech., 2007, vol. 583, p. 313.

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhou, R., Fire Technol., 2014, vol. 50, p. 143.

    Article  Google Scholar 

  24. Liu, N., Liu, Q., Deng, Z., Satoh, K., and Zhu, J., Proc. Combust. Inst., 2007, vol. 31, p. 2589.

    Article  Google Scholar 

  25. Varaksin, A.Y., Romash, M.E., Kopeitsev, V.N., and Taekin, S.I., High Temp., 2008, vol. 46, no. 6, p. 888.

    Article  Google Scholar 

  26. Varaksin, A.Y., Romash, M.E., Taekin, S.I., and Kopeitsev, V.N., High Temp., 2009, vol. 47, no. 1, p. 78.

    Article  Google Scholar 

  27. Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., in Proc. 6th Int. Symp. Multiphase Flow, Heat Mass Transfer and Energy Conversion, AIP Conf. Proc., 2010, vol. 1207, p. 342.

  28. Varaksin, A.Y., High Temp., 2017, vol. 55, no. 2, p. 286.

    Article  Google Scholar 

  29. Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., Dokl. Phys., 2014, vol. 59, p. 203.

    Article  ADS  Google Scholar 

  30. Varaksin, A.Y., Protasov, M.V., Romash, M.E., and Kopeitsev, V.N., High Temp., 2015, vol. 53, no. 4, p. 595.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-08-01382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Varaksin.

Ethics declarations

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varaksin, A.Y., Mochalov, A.A. & Romash, M.E. Experimental Study of Some Characteristics of Nonstationary Wall-Free Fire Whirls. High Temp 57, 738–743 (2019). https://doi.org/10.1134/S0018151X19050171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19050171

Navigation