Skip to main content
Log in

Study on the effect of pressure on fire whirl combustion characteristics with different air-inlet widths

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A fire whirl is a kind of spinning flow accompanied by chemical changes. It has a combustion-enhancing effect, increasing the fire’s heat release rate and may induce catastrophic consequences. However, the combustion characteristics of a fire whirl at dynamic pressure are still unknown. This experiment was conducted in a sizeable low-pressure chamber with dimensions of 3.0 m × 2.0 m × 2.0 m, in which a small-sized fire whirl was generated using a square vertical slot with variable slit width. The ambient pressure was reduced to the target pressure by the low-pressure chamber, and a dynamically pressurized environment was created by controlling the air inlet rate. This experiment investigates characteristic parameters such as combustion rate, heat radiation flux, and flame height of the fire whirl. The experimental results show that the flame height of the fire whirl with pressure changes as a result of the first increase and then maintains the same; the fire whirl has a pronounced combustion enhancement effect, and the combustion rate is about 3.5 times that of the ordinary pool fire; four walls open slit fire whirl combustion there is a “critical width,” the closer the width, the higher the mass combustion rate, the more stable the flow field, the more the ratio between the burning rate and the characteristic length of the oil basin, the more the ratio between the dimensionless number and the Grashof number is close to a linear relationship. The heat radiation flux increases with increasing pressure, and there is a linear relationship between \({\left({Q}_{r}^{\prime\prime}/{P}^{2}\right)}^{^{1}/_{4}}\) and \(\mathrm{P}^{^{-2}/_{3}}\), where \({Q^{\prime\prime}_r}\) is the flame radiation and P is the pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tohidi A, Gollner M, Xiao H (2018) Fire whirls. Annu Rev Fluid Mech 50:187–213. https://doi.org/10.1146/annurev-fluid-122316-045209

    Article  Google Scholar 

  2. Emmons H, Ying S (1967) The fire whirl 11(1):475–488. https://doi.org/10.1016/s0082-0784(67)80172-3

    Article  Google Scholar 

  3. Satoh K, Yang K (1997) Simulations of swirling fires controlled by channeled self-generated entrainment flows. Fire Saf Sci 5:201–212. https://doi.org/10.3801/IAFSS.FSS.5-201

    Article  Google Scholar 

  4. Liu C, Huang Q, Zheng K, Qin J, Zhou D, Wang J (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13(20):5373. https://doi.org/10.3390/en13205373

    Article  CAS  Google Scholar 

  5. Chuah K, Kuwana K, Saito K (2009) Modeling a fire whirl generated over a 5-cm-diameter methanol pool fire. Combust Flame 156(9):1828–1833. https://doi.org/10.1016/j.combustflame.2009.06.010

    Article  CAS  Google Scholar 

  6. Chuah K, Kuwana K, Saito K, Williams F (2011) Inclined fire whirls. Proc Combust Inst 33(2):2417–2424. https://doi.org/10.1016/j.proci.2010.05.102

    Article  CAS  Google Scholar 

  7. Hayashi Y, Kuwana K, Dobashi R (2011) Influence of vortex structure on fire whirl behavior. Fire Safety Science 10:671–679. https://doi.org/10.3801/IAFSS.FSS.10-671

    Article  Google Scholar 

  8. Hartl K, Smits A (2022) The interaction of double burner fire whirls. Combust Flame 235:111679. https://doi.org/10.1016/j.combustflame.2021.111679

    Article  CAS  Google Scholar 

  9. Yan Y, Fang X, Cheung S, Yan P, Tu J (2021) Characterisation and analysis on the instantaneous development and dynamic vortex cores of fire whirls in a fixed-frame facility. Int J Heat Mass Transf 175:121355. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121355

    Article  Google Scholar 

  10. Li S, Yao Q, Law C (2019) The bottom boundary-layer structure of fire whirls. Proc Combust Inst. https://doi.org/10.1016/j.proci.05.009

    Article  Google Scholar 

  11. Yu H, Guo S, Peng M, Li Q, Ruan J, Wan W, Chen C (2013) Study on the influence of air-inlet width on fire whirls combustion characteristic. Procedia Engineering 62:813–820. https://doi.org/10.1016/j.proeng.2013.08.130

    Article  Google Scholar 

  12. Sun P, Zhang X, Ding C, Huang X (2021) Effect of reduced pressure on the burning dynamics of fire whirls. Fire Saf J 125:103419. https://doi.org/10.1016/j.firesaf.2021.103419

    Article  Google Scholar 

  13. Zukoski E (1985) Visible structure of buoyant diffusion flames. Symp Combust 20(1):361–366. https://doi.org/10.1016/S0082-0784(85)80522-1

    Article  Google Scholar 

  14. Parente R, Pereira J, Pereira J (2019) On the influence of circulation on fire whirl height. Fire Saf J 106:146–154. https://doi.org/10.1016/j.firesaf.2019.03.010

    Article  Google Scholar 

  15. Ma Q, Liu Q, Zhang H, Tian R, Ye J, Yang R (2017) Experimental study of the mass burning rate in n-heptane pool fire under dynamic pressure. Appl Therm Eng 113:1004–1010. https://doi.org/10.1016/j.applthermaleng.2016.11.108

    Article  CAS  Google Scholar 

  16. Wei Y, Zhang J, Nadjai A, Beji T, Delichatsios M (2011) A global soot model developed for fires: validation in laminar flames and application in turbulent pool fires. Fire Saf J 46(7):371–387. https://doi.org/10.1016/j.firesaf.2011.06.004

    Article  CAS  Google Scholar 

  17. Lautenberger C, Ris J, Dembsey N, Barnett J, Baum H (2005) A simplified model for soot formation and oxidation in cfd simulation of non-premixed hydrocarbon flames. Fire Saf J 40(2):141–176

    Article  CAS  Google Scholar 

  18. Delichatsios M (1994) A phenomenological model for smoke-point and soot formation in laminar flames. Combust Sci Technol 100(1–6):283–298. https://doi.org/10.1080/00102209408935457

    Article  CAS  Google Scholar 

  19. Most J, Mandin P, Chen J, Joulain P, Durox D, Fernande-Pello A (1996) Influence of gravity and pressure on pool fire-type diffusion flames. In Symp (Int) Combust  26(1):1311–1317. https://doi.org/10.1016/S0082-0784(96)80349-3

  20. Huang Q, Lu S, Liu X, Zheng K, Xu D, Liu C (2021) Experimental thermal hazard investigation on carbonate electrolytes using a cone calorimeter. Case Stud Therm Eng. https://doi.org/10.1016/j.csite.2021.100912

    Article  Google Scholar 

  21. Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14(9):2511. https://doi.org/10.3390/en14092511

    Article  CAS  Google Scholar 

  22. Xu D, Huang G, Guo L, Chen Y, Ding C, Liu C (2022) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Mater 5(1):113–129. https://doi.org/10.1007/s42114-021-00317-x

    Article  CAS  Google Scholar 

  23. Huang Q, Glazier S, Louli A, McArthur M, Liu C, Schrooten J, Dahn J (2020) Effects of graphite heat-treatment temperature on single-crystal Li[Ni5Mn3Co2]O2/graphite pouch cells. J Electrochem Soc 167(8). https://doi.org/10.1149/1945-7111/ab9381

  24. Qin J, Liu C, Huang Q (2020) Simulation on fire emergency evacuation in special subway station based on Pathfinder. Case Stud Therm Eng 21

  25. Wu N, Zhao B, Chen X, Hou C, Huang M, Alhadhrami A, Mersal G, Ibrahim M, Tian J (2022) Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption.  Adv Compos Mater 5:1548–1556. https://doi.org/10.1007/s42114-022-00490-7

    Article  CAS  Google Scholar 

  26. Chen Y, Lin J, Mersal G, Zuo J, Li J, Wang Q, Feng Y, Liu J, Liu Z, Wang B, Xu B, Guo Z (2022) “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil. J Mater Sci Technol 128:82–97. https://doi.org/10.1016/j.jmst.2022.05.002

    Article  Google Scholar 

  27. Zhang D, Williams B, Santos V, Lofink B, Becher E, Partyka A, Peng X, Sun L (2020) Self-assembled intumescent flame retardant coatings: influence of pH on the flammability of cotton fabrics. Engi Sci 12:106–112. https://doi.org/10.30919/es8d1134

  28. Zheng Z, Lin X, Yang M, He Z, Bao E, Zhang H, Tian Z (2020) Progress in the application of machine learning in combustion studies. ES Energ Environ 9:1–14. https://doi.org/10.30919/esee8c795

  29. Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials 13(20):4622. https://doi.org/10.3390/ma13204622

    Article  CAS  Google Scholar 

  30. Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu B, Murugadoss V, Huang M, Guo Z (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00438-x

  31. Huang Q, Chen H, Zheng K, Zhu K, Liu C (2021) Comparison of oxygen consumption calorimetry and thermochemistry theory on quantitative analysis of electrolyte combustion characteristics. Case Studies in Thermal Engineering. https://doi.org/10.1016/j.csite.2021.101085

    Article  Google Scholar 

  32. Chu T, Gao Y, Yi L, Fan C, Yan L, Ding C, Liu C, Huang Q, Wang Z (2022) Highly fire-retardant optical wood enabled by transparent fireproof coatings. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00440-3

  33. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal G, Ibrahim M, El-Bahy Z, Li Y, Huang M, Guo Z (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875. https://doi.org/10.1016/j.porgcoat.2022.106875

    Article  CAS  Google Scholar 

  34. Huang Q, Yu S, Chen Y, Lu S, Lu Z, Liu C (2022) Study on the high temperature oxidation/nitridation behavior of Mg alloys AZ31, WE43 and ZE10. Case Stud Therm Eng. https://doi.org/10.1016/j.csite.2022.101759

    Article  Google Scholar 

  35. Ouyang L, Huang W, Huang M, Qiu B (2022) Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00450-1

  36. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal G, Ibrahim M, El-Bahy Z, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  37. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122. https://doi.org/10.1016/j.partic.2021.11.013

    Article  CAS  Google Scholar 

  38. Zhang Y, Zheng J, Nan J, Gai C, Shao Q, Murugadoss V, Maganti S, Naik N, Algadi H, Huang M, Xu B, Guo Z (2023) Influence of mass ratio and calcination temperature on physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications. Particuology 74:141–155. https://doi.org/10.1016/j.partic.2022.05.010

    Article  CAS  Google Scholar 

  39. Pan D, Yang G, Abo-Dief H, Dong J, Su F, Liu C, Li Y, Xu B, Murugadoss V, Naik N, El-Bahy S, El-Bahy Z, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  40. He S, Huang Y, Chen G, Feng M, Dai H, Yuan B, Chen X (2019) Effect of heat treatment on hydrophobic silica aerogel. J Hazard Mater 362:294–302. https://doi.org/10.1016/j.jhazmat.2018.08.087

  41. Meng X, Yang H, Lu Z, Liu Y (2022) Study on catalytic pyrolysis and combustion characteristics of waste cable sheath with crosslinked polyethylene. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00516-0

  42. Weng J, He Y, Ouyang D, Yang X, Chen M, Cui S, Zhang G, Yuen R, Wang J (2021) Honeycomb-inspired design of a thermal management module and its mitigation effect on thermal runaway propagation. Appl Therm Eng 195:117147. https://doi.org/10.1016/j.applthermaleng.2021.117147

  43. Shi G, He S, Chen G, Ruan C, Ma Y, Chen Q, Jin X, Liu X, He C, Du C, Dai H, Yang X (2022) Crayfish shell-based micro-mesoporous activated carbon: Insight into preparation and gaseous benzene adsorption mechanism. Chem Eng J 428:131148. https://doi.org/10.1016/j.cej.2021.131148

  44. Ding C, Zhu N, Wang X, Alhadhrami A, Mahmoud M, Ibrahim M, Huang Q, Liu C, Huang M, Wang J (2022) Experimental study on the burning behaviors of 21700 lithium-ion batteries with high specific energy after different immersion duration. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00536-w

  45. Weng J, Ouyang D, Liu Y, Chen M, Li Y, Huang X, Wang J (2021) Alleviation on battery thermal runaway propagation: Effects of oxygen level and dilution gas. J Power Sources 509:230340. https://doi.org/10.1016/j.jpowsour.2021.230340

  46. He S, Chen G, Xiao H, Shi G, Ruan C, Ma Y, Dai H, Yuan B, Chen X, Yang X (2021) Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture. J Colloid and Interf Sci 582:90–10. https://doi.org/10.1016/j.jcis.2020.08.021

Download references

Funding

This study has been sponsored by National Natural Science Foundation of China (No. 51906238 and No. 12202410), Anhui Province Outstanding Young Talents Support Program under No.gxyqZD2022058, and the Open Project Program of the State Key Laboratory of Fire Science (No. HZ2020-KF01). The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number “IF_2020_NBU_307.” Also, this work was supported by the Science and Technology Plan Project Form of Anhui Province Housing and Urban–Rural Construction (No. 2020-SF06), the Project of Anhui Jianzhu University Talent Research Program and the Horizontal commission project (No. 2019QDZ21 and No. HYB20200068), Natural Science Foundation of Anhui Province (No. 2008085QE268), Research Project Supported by Shanxi Scholarship Council of China (No. 2022–139), Natural Science Foundation of Shanxi Province (No. 20210302123017), and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (No. 20220012). The authors gratefully acknowledge these supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Ding, Mohamed H. Helal, Yan Jiao or Changcheng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 121 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Yan, Z., Lan, Q. et al. Study on the effect of pressure on fire whirl combustion characteristics with different air-inlet widths. Adv Compos Hybrid Mater 5, 2642–2650 (2022). https://doi.org/10.1007/s42114-022-00553-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00553-9

Keywords

Navigation