Skip to main content
Log in

Study of Condensation and Crystallization Processes During the Formation of Gas Hydrates in Supersonic Jets

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The stability of gas-saturated layers of amorphous ice created via the deposition of supersonic molecular beams of rarefied water vapor and methane on a substrate cooled with liquid nitrogen was experimentally studied. The adiabatic expansion of the molecular vapor beam at the exit from the supersonic nozzle leads to a decrease in temperature and the formation of crystalline nanoclusters in the flow. The presence of ready crystalline centers in nonequilibrium amorphous condensates shifts the onset of crystallization to low temperatures. The shape of the signal of differential thermal analysis, which consists of several exothermic peaks, indicates crystallization from different centers and a random nature of their distribution in the volume of the amorphous medium. Methane hydrate forms during the crystallization of water–gas condensates. Under conditions of deep metastability, the avalanche-like nucleation of crystallization centers captures gas molecules; therefore, they are not displaced by the movement of the crystallization front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Skripov, V.P. and Koverda, V.P., Spontannaya kristallizatsiya pereokhlazhdennykh zhidkostei (Spontaneous Crystallization of Supercooled Liquids), Moscow: Nauka, 1984.

  2. Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Chem. Eng. Sci., 2015, vol. 130, p. 135.

    Article  Google Scholar 

  3. Koverda, V.P., Bogdanov, N.M., and Skokov, V.N., J. Non-Cryst. Solids, 1983, vol. 57, p. 203.

    Article  ADS  Google Scholar 

  4. Bogdanov, N.M., Koverda, V.P., Skokov, V.N., Dik, A.A., and Skripov, V.P., Dokl. Akad. Nauk SSSR, 1987, vol. 293, no. 3, p. 595.

    Google Scholar 

  5. Faizullin, M.Z., Vinogradov, A.V., Tomin, A.S., and Koverda, V.P., Int. J. Heat Mass Transfer, 2017, vol. 108, p. 1292.

    Article  Google Scholar 

  6. Faizullin, M.Z., Vinogradov, A.V., Tomin, A.S., and Koverda, V.P., Dokl. Phys., 2017, vol. 62, no. 6, p. 55.

    Article  ADS  Google Scholar 

  7. Bar-Nun, A., Herman, G., Laufer, D., and Rappaport, M.L., Icarus, 1985, vol. 63, p. 317.

    Article  ADS  Google Scholar 

  8. Mayer, E. and Hallbrucker, A., J. Chem. Soc., Chem. Commun., 1989, no. 12, p. 749.

  9. Hallbrucker, A. and Mayer, E., J. Chem. Soc., Faraday Trans., 1990, vol. 86, no. (22), p. 3785.

    Article  Google Scholar 

  10. Mitterdorfer, C., Bauer, M., and Loerting, T., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 19765.

    Article  Google Scholar 

  11. Malyk, S., Kumi, G., Reisler, H., and Wittig, C., J. Phys. Chem. A, 2007, vol. 111, p. 13365.

    Article  Google Scholar 

  12. Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., High Temp., 2014, vol. 52, no. 6, p. 830.

    Article  Google Scholar 

  13. Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Int. J. Heat Mass Transfer, 2013, vol. 65, p. 649.

    Article  Google Scholar 

  14. Istomin, V.A. and Yakushev, V.S., Gazovye gidraty v prirodnykh usloviyakh (Gas Hydrates in Nature), Moscow: Nedra, 1992.

  15. Sloan, E.D. and Koh, C., Clathrate Hydrates of Natural Gases, Taylor & Francis, 2007, 3rd ed.

    Book  Google Scholar 

  16. Makagon, Yu.F., J. Nat. Gas Sci. Eng., 2010, vol. 2, no. 1, p. 49.

    Article  Google Scholar 

  17. Pang, W.X., Chen, G.J., Dandekar, A., Sun, C.Y., and Zhang, C.L., Chem. Eng. Sci., 2007, vol. 62, p. 2198.

    Article  Google Scholar 

  18. Nam-Jin Kim, Jeong Hwan Lee, Yil Sik Cho, and Wongee Chun, Energy, 2010, vol. 35, p. 2717.

    Article  Google Scholar 

  19. Mimachi, H., Takeya, S., Yoneyama, A., Hyodo, K., Takeda, T., Gotoh, Y., and Murayama, T., Chem. Eng. Sci., 2014, vol. 118, p. 208.

    Article  Google Scholar 

  20. Bishnoi, P.R. and Natarajan, V., Fluid Phase Equilib., 1996, vol. 117, p. 168.

    Article  Google Scholar 

  21. Kashchiev, D. and Firoozabadi, A., J. Cryst. Growth, 2002, vol. 243, p. 476.

    Article  ADS  Google Scholar 

  22. Shagapov, V.Sh. and Khasanov, M.K., High Temp., 2017, vol. 55, no. 5, p. 737.

    Article  Google Scholar 

  23. Ohmura, R., Ogawa, M., Yasuoka, K., and Mori, Y.H., J. Phys. Chem. B, 2003, vol. 107, p. 5289.

    Article  Google Scholar 

  24. Smirnov, G.S. and Stegailov, V.V., J. Chem. Phys., 2012, vol. 136, no. 4, 044523.

    Article  ADS  Google Scholar 

  25. Subbotin, O.S., Belosludov, V.R., Brodskaya, E.N., Piotrovskaya, E.M., and Sizov, V.V., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 8, p. 1303.

    Article  Google Scholar 

  26. Zhong, D.L., Yang, C., Liu, D.P., and Wu, Z.M., J. Cryst. Growth, 2011, vol. 327, p. 237.

    Article  ADS  Google Scholar 

  27. Dontsov, V.E. and Chernov, A.A., Int. J. Heat Mass Transfer, 2009, vol. 52, p. 4919.

    Article  Google Scholar 

  28. Chernov, A.A., Pil’nik, A.A., Elistratov, D.S., Mezentsev, I.V., Meleshkin, A.V., Bartashevich, M.V., and Vlasenko, M.G., Sci. Rep., 2017, vol. 7, 40809.

    Article  ADS  Google Scholar 

  29. Chernov, A.A., Elistratov, D.S., Mezentsev, I.V., Meleshkin, A.V., and Pil’nik, A.A., Int. J. Heat Mass Transfer, 2017, vol. 108, p. 1320.

    Article  Google Scholar 

  30. Kolmogorov, A.N., Izv. Akad. Nauk SSSR., Ser. Mat., 1937, no. 3, p. 355.

  31. Faizullin, M.Z., Skokov, V.N., and Koverda, V.P., J. Non-Cryst. Solids, 2010, vol. 356, nos. 23–24, p. 1153.

    Article  ADS  Google Scholar 

  32. Torchet, G., Schwartz, J., Farges, J., de Feraudy, M.F., and Raoult, B., J. Chem. Phys., 1983, vol. 79, no. 12, p. 6196.

    Article  ADS  Google Scholar 

  33. Faizullin, M.Z., Vinogradov, A.V., Skokov, V.N., and Koverda, V.P., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 10, p. 1706.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, projects nos. 18-08-00352a, 18-38-00443 mol., and the Basic Research Program of the Ural Branch of the Russian Academy of Sciences, project no. 18-2-2-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Faizullin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizullin, M.Z., Vinogradov, A.V., Tomin, A.S. et al. Study of Condensation and Crystallization Processes During the Formation of Gas Hydrates in Supersonic Jets. High Temp 57, 731–737 (2019). https://doi.org/10.1134/S0018151X19050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19050043

Navigation