Skip to main content
Log in

Properties of gas hydrates formed by nonequilibrium condensation of molecular beams

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Low-temperature crystallization of amorphous materials has been analyzed theoretically taking into account nonstationary nucleation. The kinetics of crystallization of amorphous water layers, formed by depositing molecular beams on a substrate cooled by liquid nitrogen, has been investigated by differential thermal analysis. The conditions of gas hydrate formation in low-temperature amorphous-ice layers saturated with carbon dioxide have been studied. The glass-transition and crystallization temperatures of the gas hydrates have been determined from the change in dielectric properties upon heating. Under the deep-metastability conditions, crystallization of water-gas layers leads to the formation of crystallohydrates. Gas molecules are captured by the avalanche-like nucleation of crystallization centers and, therefore, are not displaced by the moving crystal-melt interface. Gas-hydrate samples formed in nonequilibrium water-gas layers are convenient for studying their thermophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sloan, E.D., Nature (London), 2003, vol. 426, no. 6964, p. 353.

    Article  ADS  Google Scholar 

  2. Kashchiev, D. and Firoozabadi, A., J. Cryst. Growth, 2003, vol. 250, nos. 3–4, p. 499.

    Article  ADS  Google Scholar 

  3. Maeda, N., Wells, D., Becker, N.C., Hartley, P.G., Wilson, P.W., Haymet, A.D.J., and Kozielski, K.A., Rev. Sci. Instrum., 2011, vol. 82, p. 065109.

    Article  ADS  Google Scholar 

  4. Fatykhov, M.A. and Bagautdinov, N.Ya., High Temp., 2005, vol. 43, no. 4, p. 614.

    Article  Google Scholar 

  5. Nakoryakov, V.E., Dontsov, V.E., and Chernov, A.A., Dokl. Phys., 2006, vol. 51, no. 11, p. 621.

    Article  ADS  Google Scholar 

  6. Subbotin, O.S., Belosludov, V.R., Brodskaya, E.N., Piotrovskaya, E.M., and Sizov, V.V., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 8, p. 1303.

    Article  Google Scholar 

  7. Walsh, M.R., Koh, C.A., Sloan, E.D., Sum, A.K., and Wu, D.T., Science (Washington), 2009, vol. 326, no. 5956, p. 1095.

    Article  ADS  Google Scholar 

  8. Smirnov, G.S. and Stegailov, V.V., J. Chem. Phys., 2012, vol. 136, no. 4, p. 044523.

    Article  ADS  Google Scholar 

  9. Dontsov, V.E., Nakoryakov, V.E., and Chernoi, L.S., RF Patent 2270053, 2006.

  10. Afanasyev, A.A., High Temp., 2012, vol. 50, no. 3, p. 340.

    Article  MathSciNet  Google Scholar 

  11. Valtz, A., Chapoy, A., Coquelet, C., Paricaud, P., and Richon, D., Fluid Phase Equilib., 2004, vol. 226, p. 333.

    Article  Google Scholar 

  12. Angel, C.A., Chem. Rev. (Washington), 2002, vol. 102, no. 8, p. 2627.

    Article  Google Scholar 

  13. Johari, G.P., J. Phys. Chem. B, 2003, vol. 107, no. 34, p. 9063.

    Article  Google Scholar 

  14. Hofer, K., Astl, G., Mayer, E., and Johary, G.P., J. Phys. Chem., 1991, vol. 95, no. 26, p. 10777.

    Article  Google Scholar 

  15. Faizullin, M.Z., Skokov, V.N., and Koverda, V.P., J. Non-Cryst. Solids, 2010, vol. 356, nos. 23–24, p. 1153.

    Article  ADS  Google Scholar 

  16. Bar-Nun, A., Kleinfeld, I., and Kochavi, E., Phys. Rev. B, 1988, vol. 38, no. 11, p. 7749.

    Article  ADS  Google Scholar 

  17. Faizullin, M.Z., Reshetnikov, A.V., and Koverda, V.P., Dokl. Phys., 2010, vol. 55, no. 8, p. 388.

    Article  ADS  Google Scholar 

  18. Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Dokl. Phys. Chem., 2012, vol. 442,part 1, p. 16.

    Article  Google Scholar 

  19. Kolmogorov, A.N., Izv. Akad. Nauk SSSR, Ser. Mat., 1937, no. 3, p. 355.

    Google Scholar 

  20. Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12, nos. 11–12, p. 525.

    Google Scholar 

  21. Uhlmann, D.R., J. Non-Cryst. Solids, 1972, vol. 7, no. 2, p. 337.

    Article  ADS  Google Scholar 

  22. Ziabicki, A., J. Chem. Phys., 1968, vol. 48, no. 10, p. 4374.

    Article  ADS  Google Scholar 

  23. Skripov, V.P., in Current Topics in Materials Science, Kaldis, E. and Scheel, H.J., Eds., vol. 2: Crystal Growth and Materials, Kaldis, E., Ed., Amsterdam, The Netherlands: North-Holland, 1977, p. 327.

  24. Koverda, V.P., in Metastabil’nye sostoyaniya pri fazovykh prevrashcheniyakh (Metastable States in Phase Transformations), Sverdlovsk, Soviet Union: Ural Scientific Center of the Academy of Sciences of the Soviet Union, 1980, p. 20.

    Google Scholar 

  25. Aleksandrov, L.N., Sov. Tech. Phys. Lett., 1982, vol. 8, no. 3, p. 159.

    Google Scholar 

  26. Shklovskii, V.A. and Kuz’menko, V.M., Sov. Phys.-Usp., 1989, vol. 32, no. 2, p. 163.

    Article  ADS  Google Scholar 

  27. Lyubov, B.Ya., Teoriya kristallizatsii v bol’shikh ob″emakh (The Theory of Crystallization in Large Volumes), Moscow: Nauka, 1975.

    Google Scholar 

  28. Suga, H. and Seki, S., J. Non-Cryst. Solids, 1974, vol. 16, no. 2, p. 171.

    Article  ADS  Google Scholar 

  29. Koverda, V.P., Bogdanov, N.M., and Skripov, V.P., J. Non-Cryst. Solids, 1985, vol. 74, p. 181.

    Article  ADS  Google Scholar 

  30. Koverda, V.P., Bogdanov, N.M., and Skripov, V.P., in Termodinamicheskie issledovaniya metastabil’nykh zhidkostei (Thermodynamic Investigations of Metastable Liquids), Sverdlovsk, Soviet Union: Ural Scientific Center of the Academy of Sciences of the Soviet Union, 1986, p. 3.

    Google Scholar 

  31. Butorin, G.T. and Skripov, V.P., Sov. Phys. Crystallogr., 1972, vol. 17, no. 2, p. 322.

    Google Scholar 

  32. Spravochnik khimika (Chemist’s Reference Book), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1971, vol. I.

    Google Scholar 

  33. Osipov, Yu.A., Zheleznyi, B.V., and Bondarenko, N.F., Zh. Fiz. Khim., 1977, vol. 51, no. 5, p. 1264.

    Google Scholar 

  34. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (A Reference Book on Thermophysical Properties of Gases and Liquids), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  35. Mayer, E. and Pletzer, R., Nature (London), 1986, no. 319, p. 298.

    Google Scholar 

  36. Hallbrucker, A., Mayer, E., and Johari, G.P., J. Phys. Chem., 1989, vol. 93, no. 12, p. 4986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Faizullin.

Additional information

Original Russian Text © M.Z. Faizullin, A.V. Vinogradov, V.P. Koverda, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 6, pp. 852–862.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizullin, M.Z., Vinogradov, A.V. & Koverda, V.P. Properties of gas hydrates formed by nonequilibrium condensation of molecular beams. High Temp 52, 830–839 (2014). https://doi.org/10.1134/S0018151X14050046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14050046

Keywords

Navigation