Skip to main content
Log in

Hydrodynamics and heat transfer in single-phase fluid flows in artificially rough pipes

  • Review
  • Published:
High Temperature Aims and scope

Abstract

Studies on hydraulic resistance and heat transfer in pipes with artificial roughness of different profiles are reviewed; artificially rough surfaces, flow regimes, boundaries of flow regimes, and equations for calculation of the coefficients of hydraulic resistance and heat transfer during single-phase flow in rough pipes are classified. It has been ascertained that many available equations for calculation of hydraulic resistance and heat transfer for single-phase flows in artificially rough channels, however, do not allow these data to be always used, because of the many types and forms of artificial roughness. The generalized equations presented in this review mainly relate to flows in channels with sand-grain roughness. The absence of studies of the hydraulic resistance and heat transfer in single-phase flows in rough channels with flow swirling is noted, which is an effective way for intensification of heat transfer in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gortyshov, Yu.F. and Olimpiev, V.V., Teploobmennye apparaty s intensifitsirovannym teploobmenom (HeatExchange Apparatus with Intensified Heat Transfer), Kazan: Kazan. gos. tekhn. univ., 1999.

    Google Scholar 

  2. Migai, V.K., Modelirovanie teploobmennogo energeticheskogo oborudovaniya (Modelling of Heat Exchange Power Equipment), Leningrad: Energoatomizdat, 1987.

    Google Scholar 

  3. Zhukauskas, A.A., Konvektivnyi perenos v teploobmennikakh (Convective Transport in Heat Exchangers), Moscow: Nauka, 1982.

    Google Scholar 

  4. Kalinin, E.K., Dreitser, G.A., and Yarkho, S.A., Intensifikatsiya teploobmena v kanalakh (Enhancement of Heat Transfer in Channels), Moscow: Mashinostroenie, 1990.

    Google Scholar 

  5. Leont’ev, A.I. and Olimpiev, V.V., High Temp., 2007, vol. 45, no. 6, p. 844.

    Article  Google Scholar 

  6. Seo, J., PhD Thesis, Rensselaer Polytech. Inst., 2003. ProQuest, UMI Dissertations Publishing, 3088.25.

    Google Scholar 

  7. Rogelio, L., PhD Thesis, Georgia Inst. Technol., 2002, ProQuest, UMI Dissertations Publishing, 3072.14.

    Google Scholar 

  8. Vijiapurapu, S., PhD Tesis, Tennessee Technol. Univ., 2005, ProQuest, UMI Dissertations Publishing, 3205.91.

    Google Scholar 

  9. Nourmohammadi, K., PhD Thesis, Univ. Illinois Urbana-Champaign, 1982, ProQuest, UMI Dissertations Publishing, 8302.42.

    Google Scholar 

  10. Antuf’ev, V.I., Effektivnost’ razlichnykh form konvektivnykh poverkhnostei nagreva (Effectiveness of Various Forms of Convection Heating Surfaces), Moscow: Energiya, 1966.

    Google Scholar 

  11. Ivanov, O.P., Mamchenko, V.O., and Emel’yanov, A.L., Prom. Teplotekh., 1988, vol. 10, no. 5, p. 33.

    Google Scholar 

  12. Bergles, A.E., Proc. 6th Int. Heat Transfer Conf., Toronto, 1978, p. 89.

    Google Scholar 

  13. Petukhov, B.S., Genin, L.G., Kovalev, S.A., and Solov’ev, S.L., Teploobmen v yadernykh energeticheskikh ustanovkakh: Uchebnoe posobie dlya vuzov (Heat Transfer in Nuclear Power Plants: A manual for High Schools), Moscow: Mosk. Energ. Inst., 2003, 3rd ed.

    Google Scholar 

  14. Idel’chik, I.E., Spravochnik po gidravlicheskim soprotivleniyam (Handbook of Hydraulic Resistance), Leningrad: Gosenergoizdat, 1960.

    Google Scholar 

  15. Hopf, L., Z. Angew. Math. Mech., 1923, vol. 3, p. 329.

    Article  Google Scholar 

  16. Fromm, K., Z. Angew. Math. Mech., 1923, vol. 3, p. 339.

    Article  Google Scholar 

  17. Schiller, L., Z. Angew. Math. Mech., 1923, vol. 3, no. 1, p. 2.

    Article  ADS  MathSciNet  Google Scholar 

  18. Hausen, H., Warmebertragung im Gegenstrom, Gleichstrom und Kreuzstrom (Heat Transfer in Counterflow, Direct Flow, and Crossflow), Berlin: Springer, 1976.

    Book  Google Scholar 

  19. Moffat, R.J., Healzer, J.M., and Kays, W.M., J. Heat Transfer, 1978, vol. 100, no. 1, p. 134.

    Article  Google Scholar 

  20. Nikuradze, J., VDI-Forschungsh., 1933, no. 361, p. 16.

    Google Scholar 

  21. Ibragimov, M.Kh., Subbotin, V.I, Bobkov, V.P., Sabelev, G.I., and Taranov, G.S., Struktura turbulentnogo potoka i mekhanizm teploobmena v kanalakh (Structure of Turbulent Flow and Mechanism of Heat Transfer in Channels), Moscow: Atomizdat, 1978.

    Google Scholar 

  22. Isachenko, V.P, Agababov, S.G, and Galin, N.M., Tr. Mosk. Energ. Inst., Teploobmen gidravl. soprotivl., 1965, vol. 53, p. 27.

    Google Scholar 

  23. Tarasevich, S.E., Shchelchkov, A.V., Yakovlev, A.B., Gol’tsman, A.E., and Zinnurov, M.A., Abstracts of Papers, 5-ya Nauchnaya shkola-konferentsiya Aktual’nye voprosy teplofiziki i fizicheskoi gidrogazodinamiki (5th Scientific School-Conference on Actual Problems of Thermophysics and Physical Hydrodynamics), Alushta: TRIAKON, 2007, p. 84.

    Google Scholar 

  24. Tarasevich, S., Shchelchkov, A., and Yakovlev, A., Proc. 5th Baltic Heat Transfer Conference, Saint-Petersburg, 2007, vol. 2, p. 244.

    Google Scholar 

  25. Tarasevich, S.E., Zlobin, A.V., Shchelchkov, A.V., and Yakovlev, A.B., in Mezhd. nauch.-tekh. konf. Problemy i perspektivy razvitiya aviatsii, nazemnogo transporta i energetiki ANTE-07 (Int. Sci.-Tech. Conf on Problems and Prospects of Aviation, Ground Transportation, and Energy ANTE-07), Kazan: Kazan. Gos. Tech. Univ., 2007, vol. 2, p. 94.

    Google Scholar 

  26. Tarasevich, S.E., Shchelchkov, A.V., Yakovlev, A.V., and Zlobin, A.V., in VI Minskii mezhd. forum po teploi massoobmenu (VI Minsk Int. Conf. on Heat and Mass Transfer), Minsk, 2008, report no. 1-59.

  27. Tarasevich, S. and Yakovlev, A., in Evaporation, Condensation and Heat Transfer, Amimul Ahsan, Ed., ch. 23, Rijeka (Croatia): InTech, 2011, p. 487.

    Google Scholar 

  28. Pai Shi I, Viscous Flow Theory, vol. 2: Turbulent Flow, Princeton: Van Nostrand, 1957.

  29. Holstein, H., Zusatzweiterbildung (ZWB) UM, 3110.

  30. Fritsch, W., Z. Angew. Math. Mech., 1928, vol. 8, p. 199.

    Article  MATH  Google Scholar 

  31. Schiller, L., Z. Phys., 1920, vol. 3, p. 412.

    Article  ADS  Google Scholar 

  32. Nikuradze, I., Zakonomernosti turbulentnogo dvizheniya v gladkikh trubakh. Problemy turbulentnosti (Laws of Turbulent Flow in Smooth Pipes: Problems of Turbulence), Velikanov, M.A. and Shveikovskii, N.G, Eds., Moscow, 1936.

  33. Zegzhda, A.P., Teoriya podobiya i metodika rascheta gidrotekhnicheskikh modelei (Similarity Theory and Calculation Method for Hydraulic Engineering Models), Moscow: Gosstroiizdat, 1938.

    Google Scholar 

  34. Townes, H.W., Gow, J.L., Powe, R.E., and Weber, N., J. Basic Eng., 1972, vol. 94, no. 2, p. 353.

    Article  Google Scholar 

  35. Millionshchikov, M.D., Subbotin, V.I., Ibragimov, M.X., Taranov, G.S., and Gomonov, I.P., At. Energ., 1974, vol. 36, no. 3, p. 186.

    Article  Google Scholar 

  36. Schlichting, H., Grenzschicht-Theorie (Theory of Boundary Layer), Karlsruhe: Braun, 1951.

    Google Scholar 

  37. Taylor, R.P., Coleman, H.P., and Hodge, B.K., J. Basic Eng., 1985, vol. 107, no. 2, p. 251.

    Google Scholar 

  38. Hosni M.H., Coleman H.W., and Taylor R.P., Int. J. Heat Mass Transfer, vol. 34, p. 1067.

  39. Avduevskii, B.C. and Koshkin, V.K., Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike (Fundamentals of Heat Transfer in the Aviation and Aerospace Technology), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  40. Rylova, I.A. and Borovkov, V.S., Vestnik Mosk. Gos. Stroit. Univ., 2013, no. 4, p. 181.

    Google Scholar 

  41. Mikhailov, V.V. and Samoilova, N.V., Uch. Zap. TsAGI, 2012, vol. 18, no. 1, p. 80.

    Google Scholar 

  42. Chernikin, V.A. and Chernikin, A.V., Nauka Tekhnol. Trubopr. Transp. Nefti Nefteprod., 2012, no. 4, p. 64.

    Google Scholar 

  43. Snezhko, V.L. and Benin, D.M., Perspekt. Nauki, 2011, no. 2, p. 75.

    Google Scholar 

  44. Fleck, K.A. and Shultz, M.P., J. Fluids Eng., 2010, vol. 132, no. 4, p. 041203.

    Article  Google Scholar 

  45. Streeter, V.L., Proc. Am. Soc. Civ. Eng., 1935, vol. 61, no. 2, p. 163.

    Google Scholar 

  46. Möbius, H., Phys. Z., 1940, vol. 41, p. 202.

    Google Scholar 

  47. Nunner, W., VDI-Forschungsh., 1956, no. 22, p. 5.

    Google Scholar 

  48. Subbotin, V.P., Ibragimov, M.Kh., Ushakov, P.A., Bobkov, V.P., Zhukov, A.V., and Yur’ev, Yu.S., Gidrodinamika i teploobmen v atomnykh energeticheskikh ustanovkakh (Hydrodynamics and Heat Transfer in Nuclear Power Plants), Moscow: Atomizdat, 1975.

    Google Scholar 

  49. Millionshchikov, M.D., Subbotin, V.I., Ibragimov, M.X., Taranov, G.S., and Kobzar’, L.L., Dokl. Akad. Nauk SSSR, Ser. Matem. Fiz., 1972, no. 6, p. 207.

    Google Scholar 

  50. Millionshchikov, M.D., Subbotin, V.I., Ibragimov, M.X., Taranov, G.S., Kobzar’, L.L., Gomonov, I.P., and Sokolovskii, A.R., Preprint of Phys. Energy Inst., Obninsk, 1973, no. 385.

  51. Millionshchikov, M.D., Subbotin, V.I., Ibragimov, M.X., Taranov, G.S., and Kobzar’, L.L., At. Energ., 1973, vol. 34, no. 4, p. 235.

    Article  Google Scholar 

  52. Millionshchikov, M.D., Subbotin, V.I., Ibragimov, M.X., Taranov, G.S., and Kobzar’, L.L., Preprint of Phys. Energy Inst., Obninsk, 1973, no. 417.

  53. Adamov, G.A., in Voprosy razrabotki i ekspluatatsii gazovykh mestorozhdenii (Development and Exploitation of Gas Fields), Moscow, 1953, p. 231.

    Google Scholar 

  54. Millionshchikov, M.D., At. Energ., 1970, vol. 28, no. 3, p. 207.

    Article  Google Scholar 

  55. Teplov, A.V., in Teoriya podobiya i ee primenenie v teplotekhnike (Similarity Theory and Its Application in Thermal Engineering), Tr. Mosk. Inst. Inzh. Zh.-D. Transp., Moscow, 1961, p. 72.

    Google Scholar 

  56. Al’tshul’, A.D., Gidravlicheskie soprotivleniya (Hydraulic Resistance), Moscow, 1982.

    Google Scholar 

  57. Karman, Th., Nachr. Ges. Wiss. Goettingen, Math.Phys. Kl., 1930, p. 58.

    Google Scholar 

  58. Kerenskii, A.M., Teploenergetika, 1972, no. 10, p. 78.

    Google Scholar 

  59. Seleznev, A.A., Teploenergetika, 1955, no. 7, p. 45.

    Google Scholar 

  60. Lyakhov, V.K., Inzh.-Fiz. Zh., 1974, vol. 26, no. 1, p. 97.

    Google Scholar 

  61. Shchukin, V.K., Teploobmen i gidrodinamika vnutrennikh potokov v polyakh massovykh sil (Heat Transfer and Hydrodynamics of Internal Flows in the Fields of Mass Forces), Moscow: Mashinostroenie, 1970.

    Google Scholar 

  62. Tarasevich, S.E. and Yakovlev, A.B., High Temp., 2003, vol. 41, no. 2, p. 233.

    Article  Google Scholar 

  63. Varava, A.N., Dedov, A.V., Komov, S.A., and Yagov, V.V., Teplofiz. Vys. Temp., 2006, vol. 44, no. 5, p. 699.

    Google Scholar 

  64. Böhm, H., Arch. Eisenhuettenwes., 1932.1933, vol. 6, p. 432.

    Google Scholar 

  65. Schefels, G., Arch. Eisenhuettenwes., 1932.1933, vol. 6, p. 477.

    Google Scholar 

  66. Stanton, T.E., Philos. Trans. R. Soc., A, 1897, vol. 190, p. 67.

    Article  ADS  MATH  Google Scholar 

  67. Lorenz, H., Abhandl. Aerodyn. Inst. der RWTH Aachen, 1933, no. 13, p. 12.

    Google Scholar 

  68. Brauer, H., Atomkernenergie, 1961, vol. 6, p. 152.

    Google Scholar 

  69. Dipprey, D.F. and Sabersky, R.H., Int. J. Heat Mass Transfer, 1963, vol. 6, no. 5, p. 329.

    Article  Google Scholar 

  70. Kolar, V., Int. J. Heat Mass Transfer, 1965, vol. 8, p. 639.

    Article  Google Scholar 

  71. Sheriff, N., Gumley, P., and France, J., Chem. Process Eng., 1964, vol. 45, p. 624.

    Google Scholar 

  72. Sheriff, N. and Gumley, P., Int. J. Heat Mass Transfer, 1966, vol. 9, p. 1297.

    Article  Google Scholar 

  73. Gogogin, I.I., Teplofiz. Vys. Temp., 2006, vol. 44, no. 6, p. 918.

    Google Scholar 

  74. Dreitser, G.A. and Lobanov, I.E., High Temp., 2002, vol. 40, no. 6, p. 892.

    Article  Google Scholar 

  75. Zlobin, A.V., Il’in, G.K., Tarasevich, S.E., Shchelchkov, A.V., and Yakovlev, A.B., Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk, 2008, p. 113.

    Google Scholar 

  76. Yaglom, A.M. and Kader, B.A., J. Fluid Mechanics, 1974, vol. 62, p. 601.

    Article  ADS  MATH  Google Scholar 

  77. Kader, B.A. and Yaglom, A.M., in Pristennoe turbulentnoe techenie (Near-Wall Turbulent Flow), part 1, Novosibirsk: Izd. Sib. Otd. Akad. Nauk SSSR, 1975, p. 203.

    Google Scholar 

  78. Kader, B.A., Teor. Osn. Khim. Tekhnol., 1979, vol. 13, no. 5, p. 663.

    Google Scholar 

  79. Kader, B.A., Teor. Osn. Khim. Tekhnol., 1977, vol. 11, no. 3, p. 393.

    Google Scholar 

  80. Han, J.C., Clicksman, L.R., and Rohsenow, W.M., Int. J. Heat Mass Transfer, 1978, vol. 21, no. 8, p. 1143.

    Article  Google Scholar 

  81. Galin, N.M., Teploenergetika, 1967, no. 5, p. 67.

    Google Scholar 

  82. Buznik, V.M., Intensifikatsiya teploobmena v sudovykh ustanovkakh (Intensification of Heat Transfer in Ship Facilities), Leningrad: Sudostroenie, 1969.

    Google Scholar 

  83. Tarasevich, S.E., Filin, V.A., and Shchukin, V.K., Aviats. Tekh., 1999, no. 3, p. 64.

    Google Scholar 

  84. Kirillov, P.L., Yur’ev, Yu.S., and Bobkov, V.P., Spravochnik po teplogidravlicheskim raschetam (A Handbook of Thermal-Hydraulic Calculations), Moscow: Energoatomizdat, 1984.

    Google Scholar 

  85. Teverovskii, B.M., Izv. Vyssh. Uchebn. Zaved., Energ., 1958, no. 7, p. 84.

    Google Scholar 

  86. Migai, V.K., Izv. Akad. Nauk SSSR, Energ. Transp., 1990, no. 2, p. 169.

    Google Scholar 

  87. Townes, H.W. and Sabersky, R.H., Int. J. Heat Mass Trans, 1966, vol. 9, no. 8, p. 729.

    Article  Google Scholar 

  88. Migai, V.K. and Zhitomirskaya, I.V., Teplofiz. Vys. Temp., 1976, vol. 14, no. 2, p. 418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Tarasevich.

Additional information

Original Russian Text © S.E. Tarasevich, A.V. Zlobin, A.B. Yakovlev, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 6, pp. 938–952.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasevich, S.E., Zlobin, A.V. & Yakovlev, A.B. Hydrodynamics and heat transfer in single-phase fluid flows in artificially rough pipes. High Temp 53, 908–920 (2015). https://doi.org/10.1134/S0018151X15060206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15060206

Keywords

Navigation