Skip to main content
Log in

Parameters determining kinetic processes on an evaporation surface

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Using the previously obtained relations for the velocity distribution function of evaporating particles, the evaporation coefficient has been calculated and the measured condensation coefficient and temperature jump determined near the evaporation surface have been estimated. The evaporation coefficient is ˜0.8, which is in good agreement with the data in the literature. The condensation coefficient determined as the proportionality factor in the Hertz formula is a conventional parameter, the value of which is varied depending on many factors. In the absence of evaporation, the condensation coefficient is approximately unity, whereas at a moderate evaporation flow this value decreases by a factor of about two. The temperature jump near the interface surface measured in many experimental studies has nothing to do with the real temperature difference between the liquid and the vapor. The measurable temperature jump has been determined in this study; it is about 10 K near the surface and depends on the distance to the measuring thermocouple placed in gas in each specific experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerasimov, D.N. and Yurin, E.I., High Temp., 2014, vol. 52, no. 3, p. 366.

    Article  Google Scholar 

  2. Zhakhovskii, V.V. and Anisimov, S.I., J. Exp. Theor. Phys., 1997, vol. 84, no. 4, p. 734.

    Article  ADS  Google Scholar 

  3. Ishiyama, T., Yano, T., and Fujikawa, S., Phys. Fluids, 2004, vol. 16, no. 8, p. 2899.

    Article  ADS  Google Scholar 

  4. Cheng, S., Lechman, J.B., Plimpton, S.J., and Grest, G.S., J. Chem. Phys., 2011, vol. 134, p. 224704.

    Article  ADS  Google Scholar 

  5. Yi, P., Poulikakos, D., Walther, J., and Yadigaroglu, G., Int. J. Heat Mass Transfer, 2002, vol. 45, p. 2087.

    Article  MATH  Google Scholar 

  6. Kryukov, A.P. and Levashov, V.Yu., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 3042.

    Article  MATH  Google Scholar 

  7. Tsuruta, T. and Nagayama, G., Energy, 2005, vol. 30, p. 795.

    Article  Google Scholar 

  8. Alty, T. and Mackay, C.A., Proc. R. Soc. London, 1935, vol. 149, p. 104.

    Article  ADS  Google Scholar 

  9. Nabavian, K. and Bromley, L.A., Chem. Eng. Sci., 1963, vol. 18, p. 651.

    Article  Google Scholar 

  10. Bonacci, J.C., Myers, A.L., Nongbri, G., and Eagleton, L.C., Chem. Eng. Sci., 1976, vol. 31, p. 609.

    Article  Google Scholar 

  11. Mills, A.F. and Seban, R.A., Int. J. Heat Mass Transfer, 1967, vol. 10, p. 1815.

    Article  Google Scholar 

  12. Pound, G.M., J. Phys. Chem. Ref. Data, 1972, vol. 1, p. 135.

    Article  ADS  Google Scholar 

  13. Mosurkewich, M., Aerosol Sci. Technol., 1986, vol. 5, p. 223.

    Article  Google Scholar 

  14. Eames, I.W., Marr, N.J., and Sabir, H., Int. J. Heat Mass Transfer, 1997, vol. 40, no. 12, p. 2963.

    Article  MATH  Google Scholar 

  15. Marek, R. and Straub, J., Int. J. Heat Mass Transfer, 2001, vol. 44, p. 39.

    Article  MATH  Google Scholar 

  16. Davidovits, P., Worsnop, D.R., Jayne, J.T., Kolb, C.E., Winkler, P., Vrtala, A., Wagner, P.E., Kulmala, M., Lehtinen, K.E.J., Vesala, T., and Mozurkewich, M., Geophys. Rev. Lett., 2004, vol. 31, p. L2211.

  17. Jamielson, D.T., Nature (London), 1964, vol. 202, p. 583.

    Article  ADS  Google Scholar 

  18. Kryukov, A.P., Levashov, V.Yu., and Pavlyukevich, N.V., Inzh.–Fiz. Zh., 2014, vol. 87, p. 229.

    Google Scholar 

  19. Knacke, O. and Stranski, I.N., Prog. Met. Phys., 1956, vol. 6, p. 181.

    Article  Google Scholar 

  20. Zientara, M., Jakubczyk, D., Kolwas, K., and Kolwas, M., J. Chem. Phys. A, 2008, vol. 112, p. 5152.

    Article  Google Scholar 

  21. Labuntsov, D.A., Fizicheskie osnovy energetiki. Izbrannye trudy po teploobmenu, gidrodinamike, termodinamike (Physical Principles of Power Engineering: Selected Works on Heat Transfer, Fluid Dynamics, and Thermodynamics), Moscow: Moscow Institute of Power Engineering, 2000.

    Google Scholar 

  22. Cercignani, C., Fiszdon, W., and Frezzotti, A., Phys. Fluids, 1985, vol. 28, p. 3237.

    Article  ADS  MATH  Google Scholar 

  23. Labuntsov, D.A. and Yagov, V.V., Mekhanika dvukhfaznykh sistem (Mechanics of Two-Phase Systems), Moscow: Moscow Institute of Power Engineering, 2000.

    Google Scholar 

  24. Fang, G. and Ward, C.A., Phys. Rev. E, 1999, vol. 59, no. 1, p. 417.

    Article  ADS  Google Scholar 

  25. Ward, C.A. and Stanga, D., Phys. Rev. E, 2001, vol. 64, p. 051509.

    Article  ADS  Google Scholar 

  26. Badam, V.K., Kumar, V., Durst, F., and Danov, K., Exp. Therm. Fluid Sci., 2007, vol. 32, p. 276.

    Article  Google Scholar 

  27. Bond, M. and Struchtrup, H., Phys. Rev. E, 2004, vol. 70, p. 061605.

    Article  ADS  Google Scholar 

  28. Rahimi, P. and Ward, C.A., Int. J. Thermodyn., 2005, vol. 8, no. 1, p. 1.

    Google Scholar 

  29. Holyst, R., Litniewski, M., Jacubczyk, D., Kolwas, K., Kolwas, M., Kowalski, K., Migacz, S., Palesa, S., and Zientara, M., Rev. Prog. Phys., 2013, vol. 76, p. 034601.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Gerasimov.

Additional information

Original Russian Text © D.N. Gerasimov, E.I. Yurin, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 4, pp. 530–537.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, D.N., Yurin, E.I. Parameters determining kinetic processes on an evaporation surface. High Temp 53, 502–508 (2015). https://doi.org/10.1134/S0018151X15040112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15040112

Keywords

Navigation