Skip to main content
Log in

Rate of evaporation from the free surface of a heated liquid

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

A Commentary to this article was published on 01 January 2018

Abstract

A method and an experimental setup are developed for determining the intensity of evaporation from the free surface of water. During the measurement, the ambient air velocity and the water temperature can be varied. The mass and temperature of water, as well as the temperature, pressure, and humidity of the ambient air are measured as functions of time. The evaporation rates are calculated from the measured and recorded data in the cases of natural and forced convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Treybal, Mass-Transfer Operations (McGraw-Hill, New York, 1981).

    Google Scholar 

  2. S. Szentgyörgyi, Transzportfolyamatok, Ed. by S. Szentgyörgyi, K. Molnár, and M. Parti (Tankönyvkiadö, Budapest, 1986).

  3. M. Örvös, Diffúziös eljárások és Berendezések (BMGE, Budapest, 2006).

    Google Scholar 

  4. I. Kontur, K. Koris, and J. Winter, Hidrolögiai Számítások (Linográf Kiadö, Budapest, 2003).

    Google Scholar 

  5. W. H. Carrier, “The Temperature of Evaporation” ASHVE Trans. 24, 25–50 (1918).

    Google Scholar 

  6. R. Tang and Y. Etzion, “Comparative Studies on the Water Evaporation Rate from Wetted Surface and that from a Free Water Surface” Build. Environment. 39 (1), 77–86 (2004).

    Article  ADS  Google Scholar 

  7. G. W. Himus and J. W. Hinchly, “The Effect of a Current of Air on the Rate of Evaporation of Water Below the Boiling Point” J. Soc. Chem. Indust. 43 (34), 840–845 (1924).

    Article  Google Scholar 

  8. C. Rohwer, “Evaporation from Free Water Surface,” Tech. Bull No. 271 (US Department Agriculture, Washington, 1931).

  9. M. Lurie and N. Michailoff, “Evaporation from Free Water Surface” Indust. Eng Chem. 28 (3), 345–350 (1936).

    Article  Google Scholar 

  10. A. F. Meyer, Evaporation from Lakes and Reservoirs (Minnesota Resources Commission, Minnesota, 1942).

    Google Scholar 

  11. C. C. Smith, R. W. Jones, and G. O. G. Lof, “Energy Requirements and Potential Savings for Heated Indoor Swimming Pools” ASHRAE Trans. 99 (2), 864–874 (1993).

    Google Scholar 

  12. W. McMillan, “Heat Dispersal–Lake Trawsfynydd Cooling Studies,” in Proc. of the Symp. on Freshwater Biology and Electrical Power Generation, April 22, 1971 (Central Electr. Generating Board, Leatherhead, 1971), Part 1, pp. 41–80.

    Google Scholar 

  13. M. Gangopadhyaya, G. E. Harbeck, T. J. Nordenson, et al., Measurement and Estimation of Evaporation and Evapotranspiration, Tech. Note No. 83 (World Meteorol. Org., Geneva, 1966).

    Google Scholar 

  14. R. Cavelius, Passive Cooling Technologies, Ed. by R. Cavelius, C. Isaksson, E. Perednis, and G. E. F. Read (Austrian Energy Agency, Wien, 2013).

  15. E. Sartori, “A Critical Review on Equations Employed for the Calculation of the Evaporation Rate from Free Water Surfaces” Solar Energy 68 (1), 77–89 (2000).

    Article  ADS  Google Scholar 

  16. J. H. Watmuff, W. W. S. Charters, and D. Proctor, “Solar Wind Induced External Coefficients for Solar Collectors” COMPLES 2, 56 (1977).

    Google Scholar 

  17. S. M. Bower and J. R. Saylor, “A Study of the Sherwood–Rayleigh Relation for Water Undergoing Natural Convection-Driven Evaporation” Int. J. Heat Mass Transfer 52, 3055–3063 (2009).

    Article  Google Scholar 

  18. “Evaporating from Water Surfaces,” http://www.engineeringtoolbox.com/evaporation-water-surfaced 690.html (November 21, 2016).

  19. M. M. Shah, “Improved Method for Calculating Evaporation from Indoor Water Pools” Energ. Build. 49, 306–309 (2012).

    Article  Google Scholar 

  20. M. M. Shah, “Calculation of Evaporation from Indoor Swimming Pools: Further Development of Formulas” ASHRAE Trans. 118 (Part 2), 460–466 (2012).

    Google Scholar 

  21. M. M. Shah, “New Correlation for Prediction of Evaporation from Occupied Swimming Pools” ASHRAE Trans. 119 (Part 2), 450–455 (2013).

    Google Scholar 

  22. M. M. Shah, “Methods for Calculation of Evaporation from Swimming Pools and Other Water Surfaces” ASHRAE Trans. 120 (pt 2), 3–17 (2014).

    Google Scholar 

  23. L. Garbai and R. Sánta, “Flow Pattern Map for in Tube Evaporation and Condensation,” in Proc. of the 4th Int. Symp. on Exploitation of Renewable Energy Sources, Subotica, Serbia, March 9–10, 2012 (Subotica Tech., Subotica, 2012), pp. 125–130.

    Google Scholar 

  24. R. Santa, “The Analysis of Two-Phase Condensation Heat Transfer Models Based on the Comparison of Boundary Condition” Acta Polytech. Hungarica 9 (6), 167–180 (2012).

    Google Scholar 

  25. O. A. Volodin, A. N. Pavlenko, and N. I. Pecherkin, “Heat Transfer and Wave Characteristics of a Binary Freon Film Flowing over a Three-Dimensional Texture Surface” High Temperature 51 (6), 785–794 (2013).

    Article  Google Scholar 

  26. N. I. Pecherkin, A. N. Pavlenko, and O. A. Volodin, “Heat Transfer at Evaporation of Falling Films of Freon Mixture on the Smooth and Structured Surfaces” Thermophys. Aeromech. 18 (4), 579–589 (2011).

    Article  ADS  Google Scholar 

  27. V. I. Zhukov and A. N. Pavlenko, “Critical Phenomena at Evaporation in a Thin Liquid Layer at Reduced Pressure” J. Eng. Thermophys. 22 (4), 257–287 (2013).

    Article  Google Scholar 

  28. T. Környey, Höátvitel (Müegyetemi Kiadö, Budapest, 1999).

    Google Scholar 

  29. P. Bihari, Müszaki Hötan–Höközlés Feladatgyüjtemény és Segédlet (BME, Budapest, 2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Örvös.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 57, No. 6, pp. 168–179, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Örvös, M., Szabó, V. & Poós, T. Rate of evaporation from the free surface of a heated liquid. J Appl Mech Tech Phy 57, 1108–1117 (2016). https://doi.org/10.1134/S0021894416060195

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894416060195

Keywords

Navigation