Skip to main content
Log in

Dependence of the Mechanical Properties of Porous Titanium Nickelide on the Pore Morphology under Compression

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Porous materials are widely used in many industries. However, their mechanical properties are inferior to those of their homogeneous non-porous analogues. In the present work, on the example of porous titanium nickelide, we studied the effect of the structure of the solid framework on the mechanical properties of the porous material. A method to improve the mechanical properties by achieving a uniform density profile along the strain direction is considered. It is shown that the uniform distribution of the crystalline matrix along the strain axis does not significantly affect on the mechanical properties of the porous system. The mechanism of pore collapse under compression has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Liu, P.S. and Chen, G.F., Porous Materials: Processing and Applications, Amsterdam: Elsevier/Butterworth–Heinemann, 2014.

    Google Scholar 

  2. Davies, G.J. and Zhen, S., J. Mater. Sci., 1983, vol. 18, p. 1899.

    Article  CAS  Google Scholar 

  3. Xi, Z., Zhu, J., Tang, H., Ao, Q., Zhi, H., Wang, J., and Li, C., Materials, 2011, vol. 4, no. 4, p. 816.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lu, T.J., He, D.P., and Chen, C.Q., Adv Mech., 2006, vol. 36, no. 4, p. 517.

    Google Scholar 

  5. Chen, W.G. and Zhang, Q., Powder Met. Ind., 2005, vol. 15, no. 2, p. 38.

    CAS  Google Scholar 

  6. Guden, M., Celik, E., and Cetiner, S., Adv. Exp. Med. Biol., 2004, vol. 553, p. 257.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, C.K., Wang, W.Y., Robert, F.M., et al., J. Biomed. Mater. Res., Part B, 2010, vol. 93. No. 2, p. 562.

    Google Scholar 

  8. Volchkov, S.E., Shishkovsky, I.V., and Bayrikov, I.M., Cell Transplant. Tissue Eng., 2013, vol. 8, p. 52.

    Google Scholar 

  9. Duerig, T., Pelton, A., and Stockel, D., Mater. Sci. Eng., 1999, vol. 273, p. 149.

    Article  Google Scholar 

  10. Kapoor, D., Johns. Matthey Technol. Rev., 2017, vol. 61, p. 66.

    Article  Google Scholar 

  11. Shabalovskaya, S.A., Bio-Med. Mater. Eng., 2002, vol. 12, p. 69.

    CAS  Google Scholar 

  12. Hartl, D.J. and Lagoudas, D.C., Proc. Inst. Mech. Eng. G: Aerosp. Eng., 2007, vol. 221, p. 540.

    Article  Google Scholar 

  13. Dean, E.A. and Lopez, J.A., J. Am. Ceram. Soc., 1983, vol. 66, no. 5, p. 366.

    Article  CAS  Google Scholar 

  14. Galimzyanov, B.N. and Mokshin, A.V., Int. J. Solids Struct., 2021, vol. 224, p. 111047.

    Article  CAS  Google Scholar 

  15. Kolesnikova, A.S., Proceedings of SPIE, vol. 10069: Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications IX, Achilefu, S. and Raghavacharti, R., Eds., San Francisco: SPIE, 2017, p. 4.

  16. Carmen, T.-S., John, M., and Ross, B., J. Mater. Eng. Perform., 2018, vol. 22, no. 6, p. 2901.

    Google Scholar 

  17. Tsygankov, A.A., Galimzyanov, B.N., and Mokshin, A.V., J. Phys.: Condens. Matter, 2022, vol. 34, no. 41, p. 414003.

    CAS  Google Scholar 

  18. Galimzyanov, B.N., Nikiforov, G.A., and Mokshin, A.V., Acta Phys. Pol., A, 2020, vol. 137, p. 1149.

    Article  CAS  Google Scholar 

  19. Ko, W.-S., Grabowski, B., and Neugebauer, J., Phys. Rev. B: Condens. Matter, 2015, vol. 92, p. 134107.

    Article  Google Scholar 

  20. Bal’shin, M.Yu., Dokl. Akad. Nauk, 1949, vol. 67, no. 5, p. 831.

    Google Scholar 

  21. Duckworth, W.H., J. Am. Ceram. Soc., 1951, vol. 34, p. 1.

    Article  Google Scholar 

Download references

Funding

This study is supported by the Russian Science Foundation (project no. 19–12-00022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Nikiforov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, G.A., Galimzyanov, B.N. & Mokshin, A.V. Dependence of the Mechanical Properties of Porous Titanium Nickelide on the Pore Morphology under Compression. High Energy Chem 57 (Suppl 1), S137–S140 (2023). https://doi.org/10.1134/S0018143923070287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923070287

Navigation