Skip to main content
Log in

Cryo Plasma Etching of Porous Low-k Dielectrics

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Non-destructive plasma etching processes for dielectrics with ultra-low dielectric constant are relevant for forming metallization systems of integrated circuits with a design rule of less than 28 nm. The paper demonstrates the process of atomic layer etching of dielectrics with ultralow permittivity. The process is based on the adsorption of C4F8 gas in the pores of the film in the first stage of the cycle at cryogenic temperatures (up to – 120°C) and activation of the reaction by bombardment with accelerated particles in the second stage. The proposed process is promising because the gas condensed on the surface of the pores protects their walls from chemical degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Dutta, S., Kundu, S., Gupta, A., Jamieson, G., Granados, J.F.G., Bömmels, J., Wilson, C.J., Tőkei, Z., and Adelmann, C., IEEE Electron. Device Lett., 2017, vol. 38, p. 949.

    Article  CAS  Google Scholar 

  2. Volksen, W., Miller, R.D., and Dubois, G., Chem. Rev., 2010, vol. 110, p. 56.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, L., Ljazouli, R., Lefaucheux, P., Tillocher, T., Dussart, R., and Mankelevich, Y.A., ECS J. Solid State Sci. Technol., 2013, vol. 2, no. 6, p. N131.

    Article  CAS  Google Scholar 

  4. Baklanov, M.R., Marneffe, J.-F., Zhang, L., Ciofi, I., and Tokei, Z., Solid State Technol., 2014, vol. 57, no. 5, p. 1.

    Google Scholar 

  5. Kanarik, K.J., Lill, T., Hudson, E.A., Sriraman, S., Tan, S., Marks, J., Vahedi, V., and Gottscho, R.A., J. Vac. Sci. Technol., A, 2015, vol. 33, p. 020802.

    Article  Google Scholar 

  6. Antoun, G., Lefaucheux, P., Tillocher, T., Dussart, R., Yamazaki, K., Yatsuda, K., Faguet, J., and Maekawa, K., Appl. Phys. Lett., 2019, vol. 115, p. 153109.

    Article  Google Scholar 

  7. Antoun, G., Tillocher, T., Lefaucheux, P., Faguet, J., Maekawa, K., and Dussart, R., Sci. Rep., 2021, vol. 11, p. 357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rezvanov, A., Miakonkikh, A.V., Vishnevskiy, A.S., Rudenko, K.V., and Baklanov, M.R., J. Vac. Sci. Technol., B, 2017, vol. 35, no. 2, p. 021204.

    Article  Google Scholar 

  9. Lee, B.J., Efremov, A., and Kwon, K.H., Plasma Process Polym., 2021, vol. 18, no. 7, p. 2000249.

    Article  CAS  Google Scholar 

  10. Gaidukasov, R.A., Myakon’kikh, A.V., and Rudenko, K.V., Russ. Microelectron., 2022, vol. 51, no. 4, p. 199.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation grant no. 23-29-00771, https://rscf.ru/project/23-29-00771/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Miakonkikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miakonkikh, A.V., Kuzmenko, V.O. & Rudenko, K.V. Cryo Plasma Etching of Porous Low-k Dielectrics. High Energy Chem 57 (Suppl 1), S115–S118 (2023). https://doi.org/10.1134/S0018143923070275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923070275

Navigation