Skip to main content
Log in

Observation of a Plasma Analogue of the Mpemba Effect

  • GENERAL ASPECTS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The processes of freezing of water droplets sitting on a substrate after exposure to nanosecond spark discharges have been experimentally studied. It has been found that the droplets subjected to spark discharge treatment freeze much earlier than those unexposed to discharges. The analogy of the observed processes with the well-known Mpemba effect is noted. A qualitative explanation is given for the observed effect: rapid freezing is due to hydrated electrons, which are formed upon contact of water with plasma and play the role of crystallization centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mpemba, E.B. and Osborne, D.G., Phys. Educ., 1969, vol. 4, no. 3, p. 172.

    Article  Google Scholar 

  2. Bechhoefer, J., Kumar, A., and Chétrite, R., Nat. Rev. Phys., 2021, vol. 3, no. 8, p. 534.

    Article  Google Scholar 

  3. Tang, Z., Huang, W., Zhang, Y., Liu, Y., and Zhao, L., InfoMat, 2023, vol. 5, no. 2, p. e12352.

    Article  Google Scholar 

  4. Geng, M., Am. J. Phys., 2006, vol. 74, no. 6, p. 514.

    Article  Google Scholar 

  5. Olmo, A., Baena, R., and Risco, R., Int. J. Refrig., 2008, vol. 31, no. 2, p. 262.

    Article  CAS  Google Scholar 

  6. Esposito, S., De Risi, R., and Somma, L., Physica A (Amsterdam), 2008, vol. 387, no. 4, p. 757.

    Article  CAS  Google Scholar 

  7. Katz, J.I., Am. J. Phys., 2009, vol. 77, no. 1, p. 27.

    Article  CAS  Google Scholar 

  8. Vynnycky, M. and Mitchell, S.L., Heat Mass Transfer, 2010, vol. 46, nos. 8–9, p. 881.

    Article  Google Scholar 

  9. Brownridge, J.D., Am. J. Phys., 2011, vol. 79, no. 1, p. 78.

    Article  CAS  Google Scholar 

  10. Vynnycky, M. and Maeno, N., Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 21–22, p. 6238.

    Article  CAS  Google Scholar 

  11. Vynnycky, M. and Maeno, N., Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 23–24, p. 7297.

    Article  Google Scholar 

  12. Takada, S., Hayakawa, H., and Santos, A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2021, vol. 103, no. 3, p. 032901.

    Article  CAS  Google Scholar 

  13. Biswas, A., Prasad, V.V., and Rajesh, R., Europhys. Lett., 2021, vol. 136, no. 4, p. 46001.

    Article  CAS  Google Scholar 

  14. Dubinov, A.E., Kozhayeva, J.P., Lyubimtseva, V.A., and Selemir, V.D., IEEE Trans. Plasma Sci., 2017, vol. 45, no. 12, p. 3094.

    Article  CAS  Google Scholar 

  15. Dubinov, A.E., Kozhayeva, J.P., Lyubimtseva, V.A., and Selemir, V.D., Magnetohydrodynamics, 2018, vol. 54, no. 3, p. 261.

    Article  Google Scholar 

  16. Dubinov, A.E., Kozhayeva, J.P., Lyubimtseva, V.A., and Selemir, V.D., Adv. Colloid Interface Sci., 2019, vol. 271, no. 1, p. 101986.

    Article  CAS  PubMed  Google Scholar 

  17. Dubinov, A.E., Iskhakova, D.N., and Lyubimtseva, V.A., Phys. Fluids, 2021, vol. 33, no. 6, p. 061707.

    Article  CAS  Google Scholar 

  18. Dubinov, A.E., Kozhayeva, J.P., and Selemir, V.D., High Temp., 2018, vol. 56, no. 3, p. 451.

  19. Dubinov, A.E. and Lyubimtseva, V.A., Surf. Eng. Appl. Electrochem., 2023, vol. 59, no. 2, p. 251.

  20. Dubinov, A.E. and Lyubimtseva, V.A., Surf. Eng. Appl. Electrochem., 2023, vol. 59, no. 2, p. 251.

  21. Zhang, X., Liu, X., Min, J., and Wu, X., Appl. Therm. Eng., 2019, vol. 147, no. 1, p. 927.

    Article  Google Scholar 

  22. Zhao, Y., Yang, C., and Cheng, P., Appl. Phys. Lett., 2021, vol. 118, no. 14, p. 141602.

    Article  CAS  Google Scholar 

  23. Singh, D.P. and Singh, J.P., Appl. Phys. Lett., 2013, vol. 102, no. 24, p. 243112.

    Article  Google Scholar 

  24. Alterkop, B.A., Dubinova, I.D., and Dubinov, A.E., J. Exp. Theor. Phys., 2006, vol. 102, no. 1, p. 173.

    Article  CAS  Google Scholar 

  25. Fedorov, V.A., Plasma Phys. Rep., 2014, vol. 40, no. 10, p. 836.

    Article  Google Scholar 

  26. Piskarev, I.M., High Energy Chem., 2021, vol. 55, no. 2, p. 145.

    Article  CAS  Google Scholar 

  27. Hart, E.J. and Anbar, M., The Hydrated Electron, New York: Wiley–Interscience, 1970.

  28. Herbert, J.M. and Coons, M.P., Ann. Rev. Phys. Chem., 2017, vol. 68, no. 1, p. 447.

    Article  CAS  Google Scholar 

  29. Gopalakrishnan, R., Kawamura, E., Lichtenberg, A.J., Lieberman, M.A., and Graves, D.B., J. Phys. D: Appl. Phys., 2016, vol. 49, no. 29, p. 295205.

    Article  Google Scholar 

  30. Martin, D.C., Bartels, D.M., Rumbach, P., and Go, D.B., Plasma Sources Sci. Technol., 2021, vol. 30, no. 3, p. LT01.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dubinov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekhtyar, V.A., Dubinov, A.E. & Kolesov, H.N. Observation of a Plasma Analogue of the Mpemba Effect. High Energy Chem 57, 293–297 (2023). https://doi.org/10.1134/S0018143923040070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923040070

Keywords:

Navigation