Skip to main content
Log in

Simulation of Gas-Dynamic and Thermal Processes of Reduction of Molybdenum Fluoride and Synthesis of Its Carbide in Inductively Coupled Radiofrequency Plasma

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A method has been proposed for simulating the gas-dynamic conditions for the synthesis of molybdenum and its carbides in a radiofrequency induction plasma reactor with a vortex gas supply. A homogeneous flow of a mixture in a turbulent mode has been considered, taking into account inductive heating and the influence of the electromagnetic field force on the plasma motion. The composition of the transformation products has been determined in accordance with the results of thermodynamic calculations. The effect of the main synthesis products on the temperature field and flow in the reactor has been taken into account. The possibility of using a thermal, quasi-equilibrium argon–hydrogen plasma for the production of molybdenum and its carbides Mo2C and Mo3C2 from volatile fluoride and, as a reference, tungsten and its carbide WC has been explored. These results have been compared with those obtained earlier for boron, silicon, and their carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zelikman, A.N. and Meerson, G.A., Metallurgiya redkikh metallov (Metallurgy of Rare Metals), Moscow: Metallurgiya, 1981.

  2. Zelikman, A.N., Molibden (Molybdenum), Moscow: Metallurgiya, 1970.

    Google Scholar 

  3. Songina, O.A., Redkie metally (Rare Metals), Moscow: Metallurgiya, 1964.

  4. Khimiya i tekhnologiya redkikh i rasseyannykh elementov, Ch. 3 (Chemistry and Technology of Rare and Trace Elements, Part 3), Bol’shakov, K.A., Ed., Moscow: Vysshaya shkola, 1976.

  5. McDonald, H.O. and Stefenson, J.B., Chemical Vapor Deposition of Group IVB, VB, and VIB Elements with Nonmetals: A Literature Review, US Department of the Interior. Bureau of Mines Information Circular, 1983.

    Google Scholar 

  6. Risovany, V.D., Rotmanov, K.V., Maslakov, G.I., Goncharenko, Yu.D., Shimansky, G.A., Zvir, A.I., Smirnova, I.M., and Kuchkina, I.N., WorldJ. Nucl. Sci. Technol., 2012, vol. 2, p. 58.

    Article  CAS  Google Scholar 

  7. Kornev, R.A., Sennikov, P.G., Konychev, D.A., Potapov, A.M., Chuvilin, D.Yu., Yunin, P.A., Gusev, S.A., and Naumann, M., J. Radioanal. Nucl. Chem., 2016, vol. 309, p. 833.

    CAS  Google Scholar 

  8. Galkin, N.P. and Tumanov, Yu.N., Russ. Chem. Rev., 1971, p. 154.

  9. Shroff, A.M. and Delval, G., High Temp.-High Pressure, 1971, vol. 3, p. 695.

    CAS  Google Scholar 

  10. Karelin, V.A. and Kovalev, S.V., Izv. Tomsk. Politekh.Univ., 2005, vol. 308, p. 97.

    Google Scholar 

  11. Fridman, A., Plasma Chemistry, New York: Cambridge University Press, 2008.

    Book  Google Scholar 

  12. Rusanov, V.D., Fridman, A.A., and Sholin, G.V., Usp. Fiz. Nauk, 1981, vol. 134, p. 185.

    Article  CAS  Google Scholar 

  13. Di Giuseppe, G. and Selman, J.R., J. Electroanal. Chem., 2003, vol. 559, p. 31.

    Article  CAS  Google Scholar 

  14. Kornev, R.A., Sennikov, P.G., and Nazarov, V.V., Plasma Phys. Technol., 2017, vol. 4, p. 169.

    Article  Google Scholar 

  15. Yoon, S.F., Huang, Q.F., Rusli, Yang, H., Ahn, J., Zhang, Q., Blomfield, C., Tielsch, B., and Tan, L.Y.C., J. Appl. Phys., 1999, vol. 86, p. 4871.

    Article  CAS  Google Scholar 

  16. Wolden, C.A., Pickerell, A., Gawai, T., Parks, S., Hensley, J., and Way, J.D., ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 517.

    Article  CAS  Google Scholar 

  17. Kornev, R.A., Sennikov, P.G., Shabarova, L.V., Shishkin, A.I., Drozdova, T.A., and Sintsov, S.V., High Energy Chem., 2019, vol. 53, no. 3, p. 246.

    Article  CAS  Google Scholar 

  18. Rehmet, C., Cao, T., and Cheng, Y., Plasma Sources Sci. Technol., 2016, vol. 25, no. 2, p. 025011.

    Article  Google Scholar 

  19. Ivanov, D.V. and Zverev, S.G., IEEE Trans. Plasma Sci., 2017, vol. 45, no. 12, p. 3125.

    Article  CAS  Google Scholar 

  20. Shabarova, L.V., Plekhovich, A.D., Kut’in, A.M., Sennikov, P.G., and Kornev, R.A., High Energy Chem., 2019, vol. 53, no. 2, p. 155.

    Article  CAS  Google Scholar 

  21. Shabarova, L.V., Plekhovich, A.D., Kut’in, A.M., Sennikov, P.G., and Kornev, R.A., Theor. Found. Chem. Eng., 2020, vol. 54, no. 4, p. 631.

    Article  CAS  Google Scholar 

  22. Shabarova, L.V., Sennikov, P.G., Kornev, R.A., Plekhovich, A.D., and Kut’in, A.M., High Energy Chem., 2019, vol. 53, no. 6, p. 482.

    Article  CAS  Google Scholar 

  23. Belov, G.V., Iorish, V.S., and Yungman, V.S., High Temp., 2000, vol. 38, no. 2, p. 191.

    Article  CAS  Google Scholar 

  24. Shabarova, L.V., Kornev, R.A., and Sennikov, P.G., High Energy Chem., 2018, vol. 52, no. 5, p. 423.

    Article  CAS  Google Scholar 

  25. Murphy, A.B., Plasma Chem. Plasma Process., 2000, vol. 20, no. 3, p. 279.

    Article  CAS  Google Scholar 

  26. Gamburg, D.Yu., Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie (Hydrogen: Properties, Production, Storage, Transportation, and Use), Moscow: Khimiya, 1989.

  27. Bretsznajder, S., Wlasnosci Gazow i Cieczy (The Properties of Gases and Liquids), Warsaw: Wydawn. Naukowo-Techniczne, 1962.

  28. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (Thermophysical Properties of Metals at High Temperatures), Moscow: Metallurgiya, 1989.

  29. Fizicheskie velichiny (Physical Quantities), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 20-13-00035, and the Russian Ministry of Science and Education, project 0095-2019-0008, for providing the thermodynamic calculation program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Shabarova.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabarova, L.V., Sennikov, P.G., Kornev, R.A. et al. Simulation of Gas-Dynamic and Thermal Processes of Reduction of Molybdenum Fluoride and Synthesis of Its Carbide in Inductively Coupled Radiofrequency Plasma. High Energy Chem 54, 469–476 (2020). https://doi.org/10.1134/S0018143920060132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920060132

Keywords:

Navigation