Skip to main content
Log in

Simulation of Microwave Discharge in Liquid n-Heptane in the Presence of Argon in the Discharge Region

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A zero-dimensional model is presented for a microwave discharge in liquid n-heptane at atmospheric pressure with continuous introduction of argon into the plasma region. The model includes equations describing the formation of a solid phase from n-heptane degradation products. Along with the detailed kinetics of thermal pyrolysis of n-heptane, processes involving argon atoms and processes involving electrons, ions, and excited species are included. To determine the electron energy distribution function, the Boltzmann equation is used. For comparison with the spectral characteristics of the discharge, the kinetic scheme includes the processes of excitation of the radiative states of the hydrogen atom and the C2 molecule. Calculations have made it possible to explain the appearance of Hα lines at sufficiently high concentrations of introduced argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bruggeman, P. and Leys, C., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 053001.

    Article  CAS  Google Scholar 

  2. Samukawa, S., Hori, M., Rauf, S., et al., J. Phys. D: Appl. Phys., 2012, vol. 45, p. 253001.

    Article  CAS  Google Scholar 

  3. Bruggeman, P.J., Kushner, M.J., Locke, B.R., et al., Plasma Sources Sci. Technol., 2016, vol. 25, p. 053002.

    Article  CAS  Google Scholar 

  4. Foster, J., Phys. Plasmas, 2017, vol. 24, p. 055501.

    Article  CAS  Google Scholar 

  5. Vanraes, P. and Bogaerts, A., Appl. Phys. Rev., 2018, vol. 5, p. 031103.

    Article  CAS  Google Scholar 

  6. Lebedev, Yu.A., Plasma Phys. Rep., 2017, vol. 43, p. 676.

    Google Scholar 

  7. Horikoshi, S. and Serpone, N., RSC Adv., 2017, vol. 7, p. 47196.

    Article  CAS  Google Scholar 

  8. Lebedev, Yu.A., High Temp., 2018, vol. 56, p. 811.

    Article  CAS  Google Scholar 

  9. Hattori, Y., Mukasa, S., Nomura, S., and Toyota, H., J. Appl. Phys., 2010, vol. 107, p. 063305.

    Article  CAS  Google Scholar 

  10. Hattori, Y., Mukasa, S., Toyota, H., Yamashita, H., and Nomura, S., Surf. Coat. Technol., 2012, vol. 206, p. 2140.

    Article  CAS  Google Scholar 

  11. Mukasa, S., Nomura, S., and Toyota, H., Jpn. J. Appl. Phys., 2007, vol. 46, p. 6015.

    Article  CAS  Google Scholar 

  12. Gidalevich, E. and Boxman, R.L., J. Phys. D: Appl. Phys., 2012, vol. 45, p. 245204.

    Article  CAS  Google Scholar 

  13. Tatarinov, A.V., Lebedev, Yu.A., and Epstein, I.L., High Energy Chem., 2016, vol. 50, p. 144.

    Article  CAS  Google Scholar 

  14. Lebedev, Yu.A., Tatarinov, A.V., Epstein, I.L., and Averin, K.A., Plasma Chem. Plasma Process., 2016, vol. 36, p. 535.

    Article  CAS  Google Scholar 

  15. Lebedev, Yu.A., Tatarinov, A.V., Epstein, I.L., and Bilera, I.V., J. Phys. D: Appl. Phys., 2018, vol. 51, p. 214007.

    Article  CAS  Google Scholar 

  16. Lebedev, Yu.A., Tatarinov, A.V., and Epstein, I.L., Plasma Chem. Plasma Process., 2019, vol. 39, p. 787.

    Article  CAS  Google Scholar 

  17. Levko, D., Sharma, A., and Raja, L.L., J. Phys. D: Appl. Phys., 2016, vol. 49, p. 285205.

    Article  CAS  Google Scholar 

  18. Levko, D., Sharma, A., and Raja, L.L., J. Phys. D: Appl. Phys., 2016, vol. 49, p.22LT01.

    Article  CAS  Google Scholar 

  19. Averin, K.A., Bilera, I.V., Lebedev, Yu.A., Shakhatov, V.A., and Epstein, I.L., Plasma Process. Polym., 2019, vol. 16, e1800198.

    Article  CAS  Google Scholar 

  20. Averin, K.A., Lebedev, Yu.A., Shchegolikhin, A.N., and Yablokov, M.Yu., Plasma Process. Polym., 2017, vol. 14, no. 9, e201600227.

    Article  CAS  Google Scholar 

  21. Averin, K.A., Lebedev, Yu.A., and Shakhatov, V.A., Plasma Phys. Rep., 2018, vol. 44, p. 110.

    Article  Google Scholar 

  22. Lebedev, Yu.A. and Shakhatov, V.A., Eur. Phys. J., D, 2019, vol. 73, p. 167.

    Article  CAS  Google Scholar 

  23. COMSOL Multiphysics. https://comsol.com/chemical-reactionengineering.

  24. Westbrook, C.K., Pitz, W.J., Curran, H.J., and Mehl, M., Lawrence Livermore National Laboratory, May 19, 2004.

  25. Wang, H. and Frenklach, M., Combust. Flame, 1994, vol. 96, p. 163.

    Article  CAS  Google Scholar 

  26. Mehl, M., Pitz, W.J., Westbrook, C.K., and Curran, H.J., Proc. Combust. Inst., 2011, vol. 33, p. 193.

    Article  CAS  Google Scholar 

  27. Slovetskii, D.I., Khimiya plazmy (Plasma Chemistry), Smirnov, B.M., Ed., Moscow: Energoizdat, 1981, p. 189.

    Google Scholar 

  28. Winters, H., J. Chem. Phys., 1975, vol. 63, p. 3462.

    Article  CAS  Google Scholar 

  29. Morgan Database. www.lxcat.net. Retrieved August 29, 2014.

  30. Janev, R. and Reiter, D., Phys. Plasmas, 2004, vol. 11, p. 780.

    Article  CAS  Google Scholar 

  31. Országh, J., Danko, M., Čechvala, P., and Matejčík, Š., Astrophys. J., 2017, vol. 841, p. 17.

    Article  CAS  Google Scholar 

  32. Cacciatore, M., Capitelli, M., and Dilonardo, M., Chem. Phys., 1978, vol. 34, p. 19.

    Article  Google Scholar 

  33. Mahan, A.H., Gallaher, A., and Smith, S., Phys. Rev. A, 1976, vol. 13, p. 156.

    Article  CAS  Google Scholar 

  34. Tawara, H., Itikawa, Y., Nishimura, H., and Yoshono, M., J. Phys. Chem. Ref. Data, 1990, vol. 19, p. 617.

    Article  CAS  Google Scholar 

  35. Halmova, G., Gorfinkiel, J., and Tennyson, J., J. Phys. B, 2006, vol. 39, p. 2849.

    Article  CAS  Google Scholar 

  36. Vacher, J.R., Jorand, F., Blin-Simiand, N., and Pasquiers, S., Int. J. Mass Spectrom., 2010, vol. 295, p. 78.

    Article  CAS  Google Scholar 

  37. Hyman, H., Phys. Rev. A, 1979, vol. 20, p. 855.

    Article  CAS  Google Scholar 

  38. Karoulina, E. and Lebedev, Yu., J. Phys. D: Appl. Phys., 1992, vol. 125, p. 401.

    Article  Google Scholar 

  39. Starikovsky, A. and Aleksandrov, N., Prog. Energy Combust. Sci., 2013, vol. 39, p. 61.

    Article  CAS  Google Scholar 

  40. Denysenko, I. Wahl, E., et al., Plasma Phys. Controlled Fusion, 2019, vol. 61, p. 014014.

    Article  CAS  Google Scholar 

  41. Losev, S. and Yarygina, V., Fiz.-Khim. Kinet. Gaz. D-inam., 2012, vol. 13, no. 2, Article 307.

  42. Gordillo-Vzques, F. and Albella, J., Plasma Sources Sci. Technol., 2004, vol. 13, p. 50.

    Article  CAS  Google Scholar 

  43. Epstein, I. Gavrilovic, M., et al., Eur. Phys. J., D, 2014, vol. 68, p. 334.

    Article  CAS  Google Scholar 

  44. Lebedev, Yu., Tatarinov, A., et al., J. Phys. D: Appl. Phys., 2014, vol. 47, p. 335203.

    Article  CAS  Google Scholar 

  45. JQC. http://massey.dur.ac.uk/drf/protostellar/species_ chemistry.

  46. Wiese, W., Smith, M., and Glennon, B., Atomic Transition Probabilities, New York: National Bureau of Standards, 1966, vol. 1.

    Book  Google Scholar 

  47. Walsh, P., Phys. Rev., 1959, vol. 116, p. 511.

    Article  CAS  Google Scholar 

  48. Merlo-Sosa, L. and Soucy, G., Int. J. Chem. React. Eng., 2005, vol. 3, Article A4.

    Google Scholar 

  49. Dean, A., Davidson, D., and Hanson, R., J. Phys. Chem., 1991, vol. 95, p. 183.

    Article  CAS  Google Scholar 

  50. Hampson, R., J. Phys. Chem. Ref. Data, 1986, vol. 15 P, p. 1087.

  51. Kruse, T. and Roth, P., J. Phys. Chem. A, 1997, vol. 101, p. 2138.

    Article  CAS  Google Scholar 

  52. Smith, G., Park, C., Schneiderman, J., and Luque, J., Combust. Flame, 2005, vol. 141, p. 66.

    Article  CAS  Google Scholar 

  53. Zhang, Y., Dunn-Rankin, D., and Taborek, P., J. Appl. Phys., 1993, vol. 74, p. 6941.

    Article  CAS  Google Scholar 

  54. Tsyganov, D. Bundaleska, N., et al., Plasma Sources Sci. Technol., 2016, vol. 25, p. 015013.

    Article  CAS  Google Scholar 

  55. Mankelevich, Y., et al., Diamond Relat. Mater., 2003, vol. 12, p. 383.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the State Plan of the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Tatarinov, A.V. & Epshtein, I.L. Simulation of Microwave Discharge in Liquid n-Heptane in the Presence of Argon in the Discharge Region. High Energy Chem 54, 217–226 (2020). https://doi.org/10.1134/S0018143920030108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920030108

Keywords:

Navigation