Skip to main content
Log in

Actinometry study on dissociation fraction in low pressure capactively coupled Ar–O2 mixture plasma

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

In the given research work, experiments with optical emission spectroscopy combined with actinometry were performed in capactively coupled 13.56 MHz Ar–O2 discharge in the pressure range of 0.2 to 0.5 mbar. The Ar content in the gas mixture was varied from 5 to 30%; effect of the filling gas pressure and Ar content on the variation of emission line intensities from various species, dissociation fraction and electron temperature was investigated at 150 and 250 W input powers. The electron temperature was increased with an increase in Ar content in the mixture and input power, however, a linear decrease in electron temperature was seen with an increase in filling gas pressure. It is worth mentioning here that the electron temperature increased linearly with an increase in Ar content from 5 to 10%, thereafter reached its steady state. The excitation temperature was increased from 0.86 to 1.33 eV with an increase in Ar content from 0 to 30% at 0.2 mbar pressure and 250 W RF power. The presented work concludes that the electron temperature and generation of the active species strongly depend on Ar content in the mixture together with the discharge conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuller, N.C.M., Malyshev, M.V., Donnelly, V.M., Herman, I.P., Plasma Sources Sci. Technol. 2000, vol. 9, p. 116.

    Article  CAS  Google Scholar 

  2. Li, S., Wu, Q., Zhang, J., Wang, D., Uhm, H.S., Thin solid films. 2011, vol. 519, p. 6990.

    Article  CAS  Google Scholar 

  3. Kravchenko, A.V., Berlizova, S.A., Nesterenko, A.F., Kublanovskii, V.S., High Energy Chem. 2004, vol. 38, p. 333.

    Article  CAS  Google Scholar 

  4. Czerwiec, T., Greer, F., Graves, D.B., J. Phys. D Appl. Phys. 2005, vol. 38, p. 4278.

    Article  CAS  Google Scholar 

  5. Pagnon, D., Amorim, J., Nahorny, J., Touzeau, M., Vialle, M., J. Phys, D: Appl. Phys. 1995, vol. 28, p. 1856.

    Article  CAS  Google Scholar 

  6. Naz, M.Y., Shukrullah, S., Ghaffar, A., Shakir, I., Ullah, S., Sagir, M., Surf. Rew. Lett. 2014, vol. 21, p. 1450056.

    Article  Google Scholar 

  7. Khan, F.U., Rehman, N.U., Naseer, S., Naveed, M.A., Qayyum, A., Khattak, N.A.D., Zakaullah, M., Eur. Phys. J. Appl. Phys. 2009, vol. 45, p. 11002.

    Article  Google Scholar 

  8. Hameed, S.S., Egypt. J. Solids 2005, vol. 28, p. 144.

    Google Scholar 

  9. Ye, N.T., Xiang, C.J., Lei, L., Ying, L.J., Yan, W., Liang, W., You L., Chinese Phys. 2007, vol. 16, p. 2757.

    Article  Google Scholar 

  10. Vazquez, F.J.G., Camero, M., Aleixandre, C.G., Plasma Sources Sci. Technol. 2006, vol. 5, p. 42.

    Article  Google Scholar 

  11. Lee, Y.W., Lee, H., Chung, Th.., Current Appl. Phys. 2011, vol. 11, p. S149.

    Article  Google Scholar 

  12. Rehman, N.U., Khan, F.U., Naseer, S., Murtaza, G., Hussain, S.S., Ahmad, I., Zakaullah, M., Plasma Sci. Technol. 2011, vol. 13, p. 208.

    Article  CAS  Google Scholar 

  13. Henriques, J., Tatarova, E., Dias, F.M., Ferreira, C.M., J. Appl. Phys. 2002, vol. 91, p. 5632.

    Article  CAS  Google Scholar 

  14. Thomaz, J.C., Amorim, J., Souza, C.F., J. Phys. D: Appl. Phys. 1999, vol. 32, p. 3214.

    Article  Google Scholar 

  15. Boffard, J.B., Piech, G.A., Gehrke, M.F., Anderson, L.W., Lin, C.C., Phys. Rev. A, 1999, vol. 59, p. 2749.

    Article  CAS  Google Scholar 

  16. Puech, V., Tonhin, L.J., Phys. D Appl. Phys. 1986. vol. 19, p. 2309.

    Article  CAS  Google Scholar 

  17. Ballou, J.K., Lin, C.C., Fajen, F.E., Phys. Rev. A, 1973, vol. 8, p. 1797.

    Article  CAS  Google Scholar 

  18. Frost, R.M., Awakowicz, P., Summers, H.P., Badnell, N.R., J. Appl. Phys. 1998, vol. 84, p. 2989.

    Article  CAS  Google Scholar 

  19. Cvelbar, U., Krstulovic, N., Milosevic, S., Mozetic, M., Vacuum, 2008, vol. 82, p. 227.

    Google Scholar 

  20. Qiuping, Z., Cheng, C., Yuedong, M., Plasma Sci. Technol. 2009, vol. 11, p. 560.

    Article  Google Scholar 

  21. Rehman, N.U., Murtaza, G., Naz, M.Y., Shafi, M., Zakaullah, M., Physica Scripta, 2013, vol. 88, p. 045503.

    Article  Google Scholar 

  22. Qayyum, A., Zeb, S., Naveed, M.A., Ghauri, S.A., Zakaullah, M., Waheed, A., J. Appl. Phys. 2005, vol. 98, p. 103303.

    Article  Google Scholar 

  23. Abrar, M., Qayyum, A., Gilani, A.R., Khan, A.W., Saeed A., Naseer S., Zakaullah M., Curr. Appl. Phys. 2013, vol. 13, p. 969.

    Article  Google Scholar 

  24. Skorodumov, A.E., Sitanov, D.V., Svettsov, V.I., High Energy Chem. 2000, vol. 34, p. 331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Naz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, M.Y., Shukrullah, S., Khan, Y. et al. Actinometry study on dissociation fraction in low pressure capactively coupled Ar–O2 mixture plasma. High Energy Chem 49, 449–458 (2015). https://doi.org/10.1134/S0018143915040116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143915040116

Keywords

Navigation