Skip to main content
Log in

Multi-Parametric Approach for Earthquake Precursor Detection in Assam Valley (Eastern Himalaya, India) using Satellite and Ground Observation Data

  • Published:
Geotectonics Aims and scope

Abstract

In present study soil radon (Rn-222) emanation, geomagnetic total field intensity (Btotal), and total electron content (TEC) in ionosphere prior to Mw 5.5, Kokrajhar, Assam earthquake of September 12, 2018 were investigated using multiparametric geophysical observations at Ouguri Hills, Tezpur, Assam. Prominent anomalies were observed in the soil Rn-222 emanation, Btotal and TEC time series prior to the event and are discussed. It was observed that soil Rn-222 persisted anomalies 50 days prior to the earthquake event. The correlation coefficient between soil Rn-222 with soil temperature and soil pressure was estimated to be feeble, 0.2 and –0.4 during the investigation period. Similar anomalies were observed 26 days prior to the earthquake event in Btotal. The ionospheric TEC also persisted anomalies 17 days prior to the event. The amount of anomalous values observed for soil Rn-222, Btotal, and ionospheric TEC ranged between –15.61 to 25.02 KBq/m3, –83.33 to 10.50 nT and –13.06 to 7.09 TECU below LB and above UB respectively. An increase of 1.92 nT and a decrease of –36.77 nT of daily rate change was observed during the anomaly period compared to the normal days. The study revealed possibility of precursor detection through multi parametric approach from ground to ionosphere level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J. Angelier and S. Baruah, “Seismotectonics in Northeast India: A stress analysis of focal mechanism solutions of earthquakes and its kinematic implications,” Geophys. J. Int. 178, 303‒326 (2009).

    Article  Google Scholar 

  2. F. Arikan, H. Nayir, U. Sezen, and O. Arikan, “Estimation of single station interfrequency receiver bias using GPS-TEC,” Radio Sci. 43 (2008). https://doi.org/10.1029/2007RS003785

  3. Santanu Baruah, Saurabh Baruah, P. Bora, R. Duarah, A. Kalita, R. Biswas, and J. Kayal, “Moment magnitude (Mw) and local magnitude (ML) relationship for earthquakes in Northeast India,” Pure Appl. Geophys. 169, 1977‒1988, (2012).

    Article  Google Scholar 

  4. V. G. Bakhmutov and A. A. Groza, “The dilatancy-diffusion model: New prospects,” In Proceedings of the 7th International Conference “Problems of Geocosmos,” St. Petersburg, Russia, 2008 (2008), pp. 406–411.

  5. N. Bhargava, V. Katiyar, M. Sharma, and P. Pradhan, “Earthquake prediction through animal behavior: A review,” Indian J. Biomech. 78, 159‒165 (2009).

    Google Scholar 

  6. P. M. Bhattacharya, S. Mukhopadhyay, R. Majumdar, and J. Kayal, “3D seismic structure of the northeast India region and its implications for local and regional tectonics,” J. Asian Earth Sci. 33, 25‒41 (2008).

    Article  Google Scholar 

  7. P. M. Bhattacharya, J. Kayal, S. Baruah, and S. Arefiev, “Earthquake source zones in northeast India: Seismic tomography, fractal dimension and b value mapping,” Pure Appl. Geophys. 167, 999–1012 (2010).

    Article  Google Scholar 

  8. Criteria for Earthquake Resistant Design of Structures (Bureau of Indian Standards, New Delhi, 2002), Pt. 1.

  9. S. Chapman and J. Bartels, Geomagnetism, Vol. II: Analysis of the Data, and Physical Theories (Oxford Univ. Press, Oxford, 1940).

  10. T. Chetia, Saruabh Baruah, C. Dey, S. Sharma, and Santanu Baruah, “Probabilistic analysis of seismic data for earthquake forecast in North East India and its vicinity,” Current Sci. 117, 1167–1173 (2019).

    Article  Google Scholar 

  11. J. R. Curray, F. J. Emmel, D. G. Moore, and R. W. Raitt, “Structure, tectonics, and geological history of the northeastern Indian Ocean,” in The Indian Ocean, Vol. 6 of The Ocean Basins and Margins, Ed. by A. E. M. Nairn and F. G. Stehli (Springer, New York, 1982) pp. 399‒450.

  12. T. Diehl, J. Singer, G. Hetényi, D. Grujic, J. Clinton, D. Giardini, and E. Kissling, and GANSSER Working Group, “Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation,” Earth Planet. Sci. Lett. 471, 54‒64 (2017).

    Article  Google Scholar 

  13. I. Dobrovolsky, N. I. Gershenzon, and M. B. Gokhberg, “Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake,” Phys. Earth Planet. Inter. 57, 144‒156 (1989).

    Article  Google Scholar 

  14. B. Gutenberg, “The energy of earthquakes,” Q. J. Geol. Soc. London 112, 1–14 (1956).

    Article  Google Scholar 

  15. G. Immè and D. Morelli, “Radon as earthquake precursor,” in Earthquake Research and Analysis: Statistical Studies, Observations and Planning, Ed. by S. D’Amico (Intech Open, 2012), pp. 143–160. https://doi.org/10.5772/29917

  16. J. R. Kayal, S. S. Arefiev, S. Barua, D. Hazarika, N. Gogoi, A. Kumar, S. N. Chowdhury, and S. Kalita, “Shillong plateau earthquakes in northeast India region: Complex tectonic model,” Current Sci. 91, 109–114 (2006).

    Google Scholar 

  17. J. R. Kayal, Microearthquake Seismology and Seismotectonics of South Asia (Springer, 2008).

    Google Scholar 

  18. J. Kayal, S. S. Arefiev, S. Baruah, R. Tatevossian, N. Gogoi, M. Sanoujam, and D. Borah, “The 2009 Bhutan and Assam felt earthquakes (Mw 6.3 and 5.1) at the Kopili fault in the northeast Himalaya region,” Geomatics, Nat. Hazards Risk 1, 273‒281 (2010).

    Article  Google Scholar 

  19. J. Kayal, S. Arefiev, S. Baruah, D. Hazarika, N. Gogoi, J. Gautam, and R. Tatevossian, “Large and great earthquakes in the Shillong plateau–Assam valley area of Northeast India Region: Pop-up and transverse tectonics,” Tectonophysics 532, 186‒192, (2012).

    Article  Google Scholar 

  20. L. Kersley, D. Malan, S. E. Pryse, L. R. Cander, R. A. Bamford, A. Belehaki, R. Leitinger, S. M. Radicella, C. N. Mitchell, and P. S. J. Spencer, “Total electron content - A key parameter in propagation: Measurement and use in ionospheric imaging,” Ann. Geofis. 47 (Suppl. to Nos. 2–3), 1067–1091 (2004).

  21. K. Khattri, M. Wyss, V. Gaur, S. Saha, and V. Bansal, “Local seismic activity in the region of the Assam gap, northeast India,” Seismol. Soc. Am. Bull. 73, 459‒469 (1983).

    Google Scholar 

  22. F. Kulali, İ. Akkurt, N. Özgür, and M. Sezer, “The correlation of the seismic activities and radon concentration in soil gas,” Arab. J. Geosci. 11, 447 (2018).

    Article  Google Scholar 

  23. A. Kumar, V. Walia, S. Singh, B. S. Bajwa, S. Mahajan, S. Dhar, and T. F. Yang, “Earthquake precursory studies at Amritsar Punjab, India, using radon measurement techniques,” Int. J. Phys. Sci. 7, 5669‒5677 (2012).

    Google Scholar 

  24. Y. I. Lambert, A. McKay, and Y. Miezitis, Australia’s Uranium Resources: Trends, Global Comparisons and New Developments (Bur. Resour. Sci., Canberra, 1996).

    Google Scholar 

  25. G. Ma and T. Maruyama, “Derivation of TEC and estimation of instrumental biases from GEONET in Japan,” Ann. Geophys. 21, 2083–2093 (2003).

    Article  Google Scholar 

  26. D. Nandy and S. Dasgupta, “Seismotectonic domains of northeastern India and adjacent areas,” Phys. Chem. Earth 18, 371‒384 (1991).

    Article  Google Scholar 

  27. D. Nandy, Geodynamics of North Eastern India and the Adjoining Region (ACB Publ., Kolkata, 2001).

    Google Scholar 

  28. J. Ni and, M. Barazangi, “Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya,” J. Geophys. Res. B 89, 1147‒1163 (1984).

  29. R. Oldham, “On a plant of Glossopteris with part of the rhizome attached, and on the structure of Vartebrari,” Rec. Geol. Surv. India 30, 45‒50 (1897).

    Google Scholar 

  30. D. Ouzounov, S. Pulinets, K. Hattori, M. Parrot, J. Y. Liu, T. F. Yang, A. Rellano-Baeza, M. Kafatos, and P. Taylor, “Validation of atmosphere/ionosphere signals associated with major earthquakes by multi-instrument space-borne and ground observations,” IEEE International Geosciences and Remote Sensing Symposium “Remote Sensing for a Dynamic Earth,”Munich, Germany, 2012 (2012).

  31. V. Pham and R. J. Geller, “Comment on “Signature of pending earthquake from electromagnetic anomalies,” by K. Eftaxias et al., Geophys. Res. Lett. 29 (18), 18-1‒18-2 (2002).

  32. J. Planinić, V. Radolić, and Ž. Lazanin, “Temporal variations of radon in soil related to earthquakes,” Appl. Radiat. Isot. 55, 267‒272 (2001).

    Article  Google Scholar 

  33. M. Poddar, “The Assam earthquake of 15th August 1950,” Indian Mineral. 4, 167‒176 (1950).

    Google Scholar 

  34. S. Pulinets, K. Boyarchuk, V. Hegai, V. Kim, and A. Lomonosov, “Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling,” Adv. Space Res. 26, 1209‒1218 (2000).

    Article  Google Scholar 

  35. S. Pulinets, A. L. Contreras, G. Bisiacchi-Giraldi, and L. Ciraolo, “Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003,” Geofis. Int. 44, 369‒377 (2005).

    Google Scholar 

  36. S. Pulinets, “Lithosphere-atmosphere-ionosphere coupling (LAIC) model,” in Electromagnetic Phenomena Associated with Earthquakes, Ed. by M. Hayakawa (Research Signpost, India, 2009), pp. 235‒253.

    Google Scholar 

  37. S. Pulinets and D. Ouzounov, “Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model – An unified concept for earthquake precursors validation,” J. Asian Earth Sci. 41, 371‒382 (2011).

    Article  Google Scholar 

  38. C. Richter, “Transversely aligned seismicity and concealed structures,” Science 166, 173‒178 (1969).

    Article  Google Scholar 

  39. P. Richon, J.-C. Sabroux, M. Halbwachs, J. Vandemeulebrouck, N. Poussielgue, J. Tabbagh, and R. Punongbayan, “Radon anomaly in the soil of Taal volcano, the Philippines: A likely precursor of the M 7.1 Mindoro earthquake (1994),” Geophys. Res. Lett. 30 (2003). https://doi.org/10.1029/2003GL016902

  40. E. Rogozhin, A. Lutikov, and Tuo Shen, “Tectonic position and geological and seismic manifestations of the Gorkha earthquake of April 25, 2015, in Nepal,” Geotectonics 50, 522‒533 (2016).

    Article  Google Scholar 

  41. E. Sardon, A. Rius, and N. Zarraoa, “Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations,” Radio Sci. 29, 577‒586 (1994).

    Article  Google Scholar 

  42. E. Sardón and N. Zarraoa, “Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases?,” Radio Sci. 32, 1899‒1910 (1997).

    Article  Google Scholar 

  43. C. H. Scholz, L. R. Sykes, and Y. P. Agarwal, “Earthquake prediction: A physical basis,” Science 181, 803‒810 (1973).

    Article  Google Scholar 

  44. G. Seemala and C. Valladares, “Statistics of total electron content depletions observed over the South American continent for the year 2008,” Radio Sci. 46, (2011).

  45. R. P. Singh, W. Mehdi, R. Gautam, J. S. Kumar, J. Zlotnicki, and M. Kafatos, “Precursory signals using satellite and ground data associated with the Wenchuan Earthquake of 12 May 2008,” Int. J. Remote Sens. 31, 3341‒3354 (2010).

    Article  Google Scholar 

  46. J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed. (Univ. Sci. Books, Sausalito, Calif., 1997).

    Google Scholar 

  47. E. Tillotson, “The great Assam earthquake of August 15, 1950,” Nature 167, 128–130 (1951).

    Article  Google Scholar 

  48. A. Tomer, “Radon as a earthquake precursor: A review,” Int. J. Sci. Eng. Technol. 4, 815‒822 (2016).

    Google Scholar 

  49. C. Valladares, J. Villalobos, M. Hei, R. Sheehan, S. Basu, E. McKenzie, and V. Rios, “Simultaneous observation of traveling ionospheric disturbances in the Northern and Southern Hemispheres,” Ann. Geophys. 27, 1501‒1508 (2009).

    Article  Google Scholar 

  50. Book of Abstracts of the International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2014), Vienna, Austria, 2014 (IAEA, 2014).

Download references

ACKNOWLEDGMENTS

The authors acknowledge Dr. Saurabh Baruah, Chief Scientist, CSIR-NEIST, P.I. (MPGO, Tezpur, Assam) for his constant support and guidance. The authors are thankful to Ministry of Earth Sciences (MoES) and Department of Science and Technology (DST), Government of India for providing funds vide project no. MoES/P.O.(Seismo)/NPEP-16/2011 to CSIR-North East Institute of Technology, Geoscience Division, Jorhat, Assam-785006. The authors also thank the anonymous reviewers for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chetia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetia, T., Sharma, G., Dey, C. et al. Multi-Parametric Approach for Earthquake Precursor Detection in Assam Valley (Eastern Himalaya, India) using Satellite and Ground Observation Data. Geotecton. 54, 83–96 (2020). https://doi.org/10.1134/S0016852120010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120010045

Keywords:

Navigation