Skip to main content
Log in

Luminescence of Molecular Nitrogen Bands in the Earth’s Atmosphere during the Precipitation of High-Energy Electrons

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The luminescence-intensity profiles of the bands of the first and second positive systems of molecular nitrogen were calculated for the case of the precipitation of high-energy electrons with energies from 10 keV to 10 MeV into the atmosphere. The calculations showed that the contribution of the quenching of state B3Πg N2 increases during molecular collisions with an increase in the energy of electrons intruding into the atmosphere. This leads to a decrease in the ratio of the integrated intensities of the bands of the first and second positive systems with an increase in the energy of electrons that precipitate into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bazilevskaya, G.A., Kalinin, M.S., Kvashnin, A.N., Krainev, M.B., Makhmutov, V.S., Svirzhevskaya, A.K., Svirzhevsky, N.S., Stozhkov, Yu.I., Balabin, Yu.V., and Gvozdevsky, B.B., Precipitation of energetic magnetospheric electrons and accompanying solar wind characteristics, Geomagn. Aeron. (Engl. Transl.), 2017a, vol. 57, no. 2, pp. 147–155.

  2. Bazilevskaya, G.A., Kalinin, M.S., Krainev, M.B., Makhmutov, V.S., Svirzhevskaya, A.K., Svirzhevsky, N.S., Stozhkov, Yu.I., Filippov, M.V., Balabin, Yu.V., and Gvozdevsky, B.B., Precipitation of magnetospheric electrons into the Earth’s atmosphere and the electrons of the outer radiation belt, Bull. Russ. Acad. Sci., Phys., 2017b, vol. 81, no. 2, pp. 215–218.

    Article  Google Scholar 

  3. Gilmore, F.R., Laher, R.R., and Espy, P.J., Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems, J. Phys. Chem. Ref. Data, 1992, vol. 21, no. 5, pp. 1005–1107.

    Article  Google Scholar 

  4. Heavner, M.J., Morrill, J.S., Siefring, C., Sentman, D.D., Moudry, D.R., Wescott, E.M., and Bucsela, E.J., Near-ultraviolet and blue spectral observations of sprites in the 320–460 nm region: N2 (2PG) emissions, J. Geophys. Res., 2010, vol. 115, A00E44. https://doi.org/10.1029/2009JA014858

    Article  Google Scholar 

  5. Hoder, T., Bonaventura, Z., Bourdon, A., and Simek, M., Sub-nanosecond delays of light emitted by streamer in atmospheric pressure air: Analysis of N2(C3Πu) and \({\text{N}}_{2}^{ + }\)(B2 \(\Sigma _{u}^{ + }\)) emissions and fundamental streamer structure, J. Appl. Phys., 2015, vol. 117, 073302.

    Article  Google Scholar 

  6. Kanmae, T., Stenbaek-Nielsen, H.C., and McHarg, M.G., Altitude resolved sprite spectra with 3 ms temporal resolution, Geophys. Res. Lett., 2007, vol. 34, L07810. https://doi.org/10.1029/2006GL028608

    Article  Google Scholar 

  7. Kirillov, A.S., Electronic kinetics of molecular nitrogen and molecular oxygen in high-latitude lower thermosphere and mesosphere, Ann. Geophys., 2010, vol. 28, no. 1, pp. 181–192.

    Article  Google Scholar 

  8. Kirillov, A.S., Excitation and quenching of ultraviolet nitrogen bands in the mixture of N2 and O2 molecules, J. Quant. Spec. Rad. Transfer, 2011, vol. 112, no. 13, pp. 2164–2174.

    Article  Google Scholar 

  9. Kirillov, A.S., Intermolecular electron energy transfer processes in the collisions of N2(A3 \(\sum\nolimits_u^ + , \)v = 0–10) with CO and N2 molecules, Chem. Phys. Lett., 2016, vol. 643, pp. 131–136.

    Article  Google Scholar 

  10. Kirillov, A.S., Intermolecular electron energy transfer processes in the quenching of N2(C3Πu, v = 0–4) by collisions with N2 molecules, Chem. Phys. Lett., 2019, vol. 715, pp. 263–267.

    Article  Google Scholar 

  11. Kirillov, A.S. and Belakhovsky, V.B., The kinetics of N2 triplet electronic states in the upper and middle atmosphere during relativistic electron precipitations, Geophys. Res. Lett., 2019, vol. 46, pp. 7734–7743. https://doi.org/10.1029/2019GL083135

    Article  Google Scholar 

  12. Kirillov, A.S., Yagodkina, O.I., Ivanov, V.E., and Vorob’ev, V.G., Excitation mechanisms of the 1PG system of N2 in aurorae, Geomagn. Aeron., 1987, vol. 27, no. 3, pp. 419–427.

    Google Scholar 

  13. Konovalov, V.P., Degradation spectra of electrons in nitrogen, oxygen, and air, Zh. Tekh. Fiz., vol. 63, no. 3, pp. 23–33. 1993.

    Google Scholar 

  14. Konovalov, V.P. and Son, E.E., Degradation spectra of electrons in gases, Khim. Plazmy, 1987, vol. 14, pp. 194–227.

    Google Scholar 

  15. Krivolutsky, A.A. and Repnev, A.I., Vozdeistvie kosmicheskikh faktorov na ozonosferu Zemli (Impact of Space Factors on the Earth’s Ozonosphere), Moscow: GEOS, 2009.

  16. Krivolutsky, A.A. and Repnev, A.I., Impact of space energetic particles on the Earth’s atmosphere (a review), Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 685–716.

  17. Makhmutov, V., Bazilevskaya, G., Stozhkov, Y., Svirzhevskaya, A., and Svirzhevsky, N., Catalogue of electron precipitation events as observed in the long-duration cosmic ray balloon experiment, J. Atmos. Sol.-Terr. Phys., 2016, vol. 149, pp. 258–276.

    Article  Google Scholar 

  18. Mironova, I., Aplin, K., Arnold, F., Bazilevskaya, G., Harrison, R., Krivolutsky, A., Nicoll, K., Rozanov, E., Turunen, E., and Usoskin, I., Energetic particle influence on the Earth’s atmosphere, Space Sci. Rev., 2015, vol. 194, nos. 1–4, pp. 1–96.

    Article  Google Scholar 

  19. Rees, M.H., Stewart, A.I., Sharp, W.E., Hays, P.B., Hoffman, R.A., Brace, L.H., Doering, J.P., and Peterson, W.K., Coordinated rocket and satellite measurements of an auroral event. 1. Satellite observations and analysis, J. Geophys. Res., 1977, vol. 82, no. 16, pp. 2250–2257.

    Article  Google Scholar 

  20. Sharp, W.E., Rees, M.H., and Stewart, A.I., Coordinated rocket and satellite measurements of an auroral event. 2. The rocket observations and analysis, J. Geophys. Res., 1979, vol. 84, no. A5, pp. 1977–1985.

    Article  Google Scholar 

  21. Simek, M., Optical diagnostics of streamer discharges in atmospheric gases, J. Phys. D: Appl. Phys., 2014, vol. 47, id 463001.

  22. Turunen, E., Verronen, P.T., Seppälä, A., Rodger, C.J., Clilverd, M.A., Tamminen, J., Enell, C.-F., and Ulich, T., Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, nos. 10–11, pp. 1176–1189.

    Article  Google Scholar 

  23. Vallance, J.A., Aurora, Dordrecht, Netherlands: D. Reidel, 1974.

    Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 18-77-10018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Kirillov or V. B. Belakhovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, A.S., Belakhovsky, V.B. Luminescence of Molecular Nitrogen Bands in the Earth’s Atmosphere during the Precipitation of High-Energy Electrons. Geomagn. Aeron. 60, 90–95 (2020). https://doi.org/10.1134/S0016793220010077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220010077

Navigation