Skip to main content
Log in

Strontium and Neodymium Isotopic Signatures in Basalt Glasses of the Mid-Atlantic Ridge, 12°–31° N

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper presents the new geochemical isotope (Sr–Nd system, H2O, Cl) data obtained for basalt glasses of the Mid-Atlantic Ridge (MAR) sampled from six areas of the MAR axial zone between 31° and 12° N. The data are consistent with the existing ideas about large-scale geochemical segmentation of the MAR. It is shown that samples from predominantly serpentinite segments have a narrower range of variations of strontium isotopic composition (87Sr/86Sr = 0.7027–0.7032) in comparison with samples collected from the areas where the crustal section is dominated by basalts (87Sr/86Sr = 0.7024–0.7041). The variation ranges of the neodymium isotopic composition in these two groups of samples are almost identical (εNd = +4.9 to +10.9 and +5.9 to +11.6 in serpentinite and basalt segments, respectively), although, in general, serpentinite segments have a slightly more enriched composition. The wide variations of the neodymium isotopic composition and increased contents of Cl, H2O, and U, as well as increased K2O/TiO2 and La/Sm ratios, in samples from serpentinites can most probably be related to the participation of different geochemically heterogeneous sources in the magmatism of the MAR axial zone. The influence of enriched plume-type matter cannot be excluded in some segments. The isotopic composition of noble gases may shed light on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. S. Bortnikov, S. A. Silantev, F. Bea, P. Montero, T. F. Zinger, S. G. Skolotnev, and E. V. Sharkov, “Multiple melting of a heterogeneous mantle and episodic accretion of oceanic crust in a spreading zone: zircon U-Pb Age and Hf-O Isotope Evidence from an Oceanic Core Complex of the Mid-Atlantic Ridge,” Petrology 30 (1), 1–24 (2022).

    Article  Google Scholar 

  2. H. Bougault, L. Dmitriev, J. G. Schilling, A. Sobolev, J. L. Joron, and H. D. Needham, “Mantle heterogeneity from trace elements: MAR triple junction near 14° N,” Earth Planet. Sci. Lett. 88, 27–36 (1988).

    Article  Google Scholar 

  3. A. I. Buikin, S. A. Silantyev, and A. B. Verchovsky, “N‒Ar–He–CO2 systematics combined with H2O, Cl, K abundances in MORB glasses demonstrate interaction of magmatic and hydrothermal systems: a case for MAR at 16°07′–17°11′ N,” Geochem. Int. 60 (11), 1068–1086 (2022).

    Article  Google Scholar 

  4. D. J. DePaolo, “Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes,” Geochim. Cosmochim. Acta 44, 1185–1196 (1980).

    Article  Google Scholar 

  5. D. J. DePaolo, “The mean life of continents: estimates of continental recycling rates from Nd and Hf isotopic data and implications for mantle structure,” Geophys. Res. Lett. 10, 705–708 (1983).

    Article  Google Scholar 

  6. L. Dosso, B. B. Hanan, H. Bougolt, J. G. Schilling, and J. L. Joron, “Sr-Nd-Pb geochemical morphology between 10° and 17° on MidAtlantic Ridge: a new MORB isotope signature. Earth Planet. Sci. Lett. 6, 29–43 (1991).

    Article  Google Scholar 

  7. C. Hemond, A. W. Hofmann, I. Vlastelic, and F. Nauret, “Origin of MORB enrichment and relative trace element compatibilities along the Mid–Atlantic Ridge between 10° and 24° N. Geochem. Geophys. Geosyst. 7 (12), Q12010 (2006).https://doi.org/10.1029/2006GC001317

  8. A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements,” Treaties Geochem. 2, 61–101 (2003).

    Google Scholar 

  9. S. E. Humphris, M. K. Tivey, and M. A. Tivey, “The Trans-Atlantic Geotraverse hydro-thermal field: A hydrothermal system on an active detachment fault,” Deep Sea Res., Part II. 121, 8–16 (2015).

    Article  Google Scholar 

  10. M. G. Jackson and R. Dasgupta, “Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts,” Earth Planet. Sci. Lett. 276, 175–186 (2008).

    Article  Google Scholar 

  11. S. B. Jacobsen, “Isotopic constraints on crustal growth and recycling,” Earth Planet. Sci. Lett. 90, 315–329 (1988).

    Article  Google Scholar 

  12. M. A. Kendrick, M. Scambelluri, M. Honda, and D. Phillips, “High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction,” Nat. Geosci. 4 (11), 807–812 (2011).

    Article  Google Scholar 

  13. M. A. Kendrick, R. Arculus, P. Burnard, and M. Honda, “Quantifying brine assimilation by submarine magmas: Examples from the Galápagos Spreading Centre and Lau Basin,” Geochim. Cosmochim. Acta 123, 150–165 (2013).

    Article  Google Scholar 

  14. M. A. Kendrick, C. Hémond, V. S. Kamenetsky, L. Danyushevsky, C. W. Devey, T. Rodemann, M. G. Jackson, and M. R. Perfit, “Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere,” Nat. Geosci. 10 (3), 222–228 (2017).

    Article  Google Scholar 

  15. A. J. R. Kent, M. D. Norman, and I. D. Stolper E. M. Hutcheon, “Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii,” Chem. Geol. 156, 299–319 (1999).

    Article  Google Scholar 

  16. E. M. Klein and C. H. Langmuir, “Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness,” Geophys. Res. 92, 8089–8115 (1987).

    Article  Google Scholar 

  17. Yu. A. Kostitsyn, “Terrestrial and chondritic Sm-Nd and Lu-Hf isotopic systems: are they identical?,” Petrology 12 (5), 397–411 (2004).

    Google Scholar 

  18. Yu. A. Kostitsyn, “Relationships between the Chemical and Isotopic (Sr, Nd, Hf, and Pb) Heterogeneity of the mantle,” Geochem. Int. 45 (12), 1173–1196 (2007)

    Article  Google Scholar 

  19. Yu. A. Kostitsyn, S. A. Silantyev, M. O. Anosova, V. V. Shabykova, and S. G. Skolotnev, “Age of Plutonic Rocks from the Vema Fracture Zone (Central Atlantic) and Nature of Their Mantle Sources. Geochem. Int. 56 (2), 89–110 (2018).

    Article  Google Scholar 

  20. R. Sh. Krymsky, N. M. Sushchevskaya, B. V. Belyatsky, and N. A. Migdisova, “Peculiarities of the osmium isotopic composition of basaltic glass from the western termination of the Southwest Indian Ridge,” Dokl. Earth Sci. 428 (1), 1126–1130 (2009).

    Article  Google Scholar 

  21. Roex A. P. Le, H. J. B. Dick, A. J. Erlank, A. M. Reid, F. A. Frey, and S. R. Hart, “Geochem-istry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 degrees east,” J. Petrol. 24, 267–318 (1983).

    Article  Google Scholar 

  22. S. Moorbath, “Age and isotopic evidence for the evolution of continental crust,” Philos. Trans. R. Soc. Ser. 288 (1355), 401–413 (1978).

    Google Scholar 

  23. Y. Niu, M. Wilson, E. R. Humphreys, and M. J. O’Hara, “The origin of Intra-plate Ocean Island Basalts (OIB): the lid effect and its geodynamic Implications,” J. Petrol. 51 (7–8), 1443–1468 (2011).

    Article  Google Scholar 

  24. A. N. Pertsev, L. Ya. Aranovich, V. Y. Prokofiev, I. P. Solovova, O. A. Ageeva, S. E. Borisovskiy, K. N. Shatagin, and O. M. Zhilicheva, “Potassium-rich granite melt inclusions in zircon from abbro-hosted felsic stringers, Mid-Atlantic Ridge at 13°34′ N: E-MORB connection,” Li-thos 400–401, 106300 (2021).

    Google Scholar 

  25. M. V. Portnyagin, S. G. Simakin, and A. V. Sobolev, “Fluorine in primitive magmas of the Troodos Ophiolite Complex, Cyprus: analytical methods and main results,” Geochem. Int. 40 (7), 625–632 (2002).

    Google Scholar 

  26. N. M. Revyako, Yu. A. Kostitsyn, and Ya. V. Bychkova, “Interaction between a mafic melt and host rocks during formation of the Kivakka Layered Intrusion, North Karelia,” Petrology 20 (2), 101–119 (2012).

    Article  Google Scholar 

  27. P. A. Rona, “TAG Hydrothermal Field: Mid-Atlantic Ridge crest at latitude 26° N,” J. Geol. Soc. 137, 385–402 (1980).

    Article  Google Scholar 

  28. J. G. Schilling, “Icelandic mantle plume: geochemical evidence along the Reykjanes Ridge,” Nature. 242, 565–571 (1973).

    Article  Google Scholar 

  29. J. C. Shilling, “Geochemical and isotopic variation along the Mid-Atlantic Ridge axis from 79° to 0° N,” Geol. Soc. Amer. M, 137–156 (1986).

  30. E. V. Sharkov, N. S. Bortnikov, O. A. Bogatikov, T. F. Zinger, V. E. Beltenev, and A. V. Chistyakov, “Third layer of the oceanic crust in the axial part of the Mid-Atlantic Ridge (Sierra Leone MAR segment, 6° N),” Petrology 13 (6), 540–570 (2005).

    Google Scholar 

  31. S. A. Silantyev, “Metamorphism in the modern oceanic basins,” Petrology 1 (4), 450–473 (1995).

    Google Scholar 

  32. S. A. Silantyev, “Variations in the geochemical and isotopic characteristics of residual peridotites along the Mid-Atlantic Ridge as a function of the nature of the mantle magmatic sources,” Petrology 11 (4), 305–326 (2003).

    Google Scholar 

  33. S. A. Silantyev, L. V. Danyushevskii, A. A. Plechova, L. Dosso, B. A. Bazylev, and V. E. Belte-nev, “Geochemical and isotopic signatures of magmatic products in the MAR rift valley at 12°49′–17°23′ N and 29°59′–33°41′ N: evidence of two contrasting sources of the parental melts,” Petrology 16 (1), 36–62 (2008).

    Article  Google Scholar 

  34. S. A. Silantyev, N. S. Bortnikov, K. N. Shatagin, Ya. V. Bychkova, E. A. Krasnova, and V. E. Beltenev, “Peridotite–basalt association at MAR between 1942 and 1959 N: evaluation of petrogenetic conditions and material balance during hydrothermal transformation of the oceanic crust,” Petrology 23 (1), 1–21 (2015).

    Article  Google Scholar 

  35. S. A. Silantyev, A. I. Buikin, A. R. Tskhovrebova, V. V. Shabykova, and V. E. Beltenev, “Variations in the composition of MORB chilled glasses from the Mid-Atlantic Ridge, 12°–31° N: reflection of compositional evolution of parental melts and the influence of a hydrothermal component,” Petrology 31 (5), 475–491 (2023).

    Article  Google Scholar 

  36. V. K. Smirnov, A. V. Sobolev, V. G. Batanova, M. V. Portnyagin, S. G. Simakin, and E. V. Potapov, “Quantitative SIMS analysis of melt inclusions and host minerals for trace elements and H2O,” EOS Trans. AGU 76 (17), 270 (1995).

    Google Scholar 

  37. A. V. Sobolev, “Melt inclusions in minerals as a source of principle petrological information,” Petrology 4 (3), 209–220 (1996).

    Google Scholar 

  38. N. A. Stroncik and S. Niedermann, “Atmospheric contamination of the primary Ne and Ar signal in mid-ocean ridge basalts and its implications for ocean crust formation,” Geochim. Cosmochim. Acta 172, 306–321 (2016).

    Article  Google Scholar 

  39. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. London, Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  40. S. S. Sun, R. W. Nesbitt, and A. Y. Sharaskin, “Geochemical characteristics of mid-ocean ridge basalts,” Earth Planet. Sci. Lett. 44 (1), 119–138 (1979).

    Article  Google Scholar 

  41. S. P. Verma, “Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb and Sr-Nd-Pb isotope systematics of mid-ocean ridge basalt,” Geochem. J. 26, 159–177 (1992).

    Article  Google Scholar 

  42. R. K. Workman and S. R. Hart, “Major and trace element composition of the depleted MORB mantle (DMM),” Earth Planet. Sci. Lett. 231 (1–2), 53–72 (2005).

    Article  Google Scholar 

  43. A. Zindler and S. Hart, “Chemical geodynamics,” Ann. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the reviewers S.G. Skublov and K.N. Shatagin for valuable corrections and comments. The authors are grateful to Y.A. Kostitsyn for advice and suggestions that allowed the text and figures to be considerably improved and to scientific editor A.V. Chugaev for handling the manuscript.

Funding

This work was supported by Russian Science Foundation, grant no. 22-27-00815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Tskhovrebova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Hannibal

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tskhovrebova, A.R., Shabykova, V.V., Silantyev, S.A. et al. Strontium and Neodymium Isotopic Signatures in Basalt Glasses of the Mid-Atlantic Ridge, 12°–31° N. Geochem. Int. 61, 1241–1252 (2023). https://doi.org/10.1134/S0016702923120054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923120054

Keywords:

Navigation